• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tracking retinal motion with a scanning laser ophthalmoscope

Xu, Zhiheng 12 1900 (has links)
No description available.
2

Study of laser retinal coagulation using a closed-circuit television ophthalmoscope

Wilton, Stephen Roland January 1965 (has links)
The mechanism and the history of retinal photocoagulation are reviewed. The eye and the light beam parameters are discussed as they affect the coagulation lesion, and optimum parameters are indicated. Some comparisons are made between photocoagulators of various types. A new reason which may account for the unpredictability of the lesion size for a given exposure, the variable focal length or lens-to-retina distance of the eye, is suggested and studied. The use of a television ophthalmoscope for studying retinal coagulation generally, and in carrying out special studies in this thesis, is reported. Some unique haemorrhages and blast effects obtained during coagulation experiments are reported. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
3

In vivo imaging of retinal ganglion cells and microglia. / CUHK electronic theses & dissertations collection

January 2010 (has links)
A confocal scanning laser ophthalmoscope (CSLO) was used to image the axonal and dendritic aborizations of RGCs in the Thy-1 YFP mice. With quantitative analysis of cell body area, axon diameter, dendritic field, number of terminal branches, total dendritic branch length, branching complexity, symmetry and distance from the optic disc, the morphologies of RGCs and the patterns of axonal and dendritic degeneration were analyzed. After optic nerve crush, RGC damage was observed prospectively to begin with progressive dendritic shrinkage, followed by loss of the axon and the cell body. Similar pattern of RGC degeneration was observed after 90 minutes of retinal ischemia although no morphological changes were detected when the duration of ischemia was shortened to 30 minutes. The rate of dendritic shrinkage was variable and estimated on average 2.0% per day and 11.7% per day with linear mixed modeling, after optic nerve crush and retinal ischemic injury, respectively. RGCs with a larger dendritic field had a slower rate of dendritic shrinkage. / In summary, we demonstrated that dendritic shrinkage could be evident even before axonal degeneration after optic nerve crush and retinal ischemic injury. We have established a methodology for in vivo and direct visualization of RGCs and retinal microglia, which could provide reliable and early markers for neuronal damage. Measuring the rate of dendritic shrinkage and tracking the longitudinal activation of microglia would provide new paradigms to study the mechanism of neurodegenerative diseases and offer new insights in testing novel therapies for neuroprotection. / Progressive neuronal cell death and microglial activation are the key pathological features in most neurodegenerative diseases. While investigating the longitudinal profiles of neuronal degeneration and microglial activation is pertinent to understanding disease mechanism and developing treatment, analyzing progressive changes has been obfuscated by the lack of a non-invasive approach that allows long term, serial monitoring of individual neuronal and microglial cells. Because of the clear optical media in the eye, direct visualization of the retinal ganglion cells (RGCs) and microglia is possible with high resolution in vivo imaging technique. In this study, we developed experimental models to visualize and characterize the cellular morphology of RGCs and retinal microglia in vivo in the Thy-1 YFP and the CX3CR1 +/GFP transgenic mice, described the patterns of axonal and dendritic shrinkage of RGCs, discerned the dynamic profile of microglial activation and investigated the relationship between RGC survival and microglial activation after optic nerve crush and retinal ischemic injury induced by acute elevation of intraocular pressure. / The longitudinal profile of microglial activation was investigated by imaging the CX3CR1GFP/+ transgenic mice with the CSLO. Activation of retinal microglia was characterized with an increase in cell number reaching a peak at a week after optic nerve crush and retinal ischemic injury, which was followed by a gradual decline falling near to the baseline at the 4 th week. The activation of retinal microglia was proportional to the severity of injury. The number of RGCs survival at 4 weeks post-injury was significantly associated with the number of activated retinal microglia. / Li, Zhiwei. / Adviser: Leung Kai Shun. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 50-66). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
4

Efficient registration of limited field of view ocular fundus imagery

Van der Westhuizen, Christo Carel 12 1900 (has links)
Thesis (MScEng)-- Stellenbosch University, 2013. / ENGLISH ABSTRACT: Diabetic- and hypertensive retinopathy are two common causes of blindness that can be prevented by managing the underlying conditions. Patients suffering from these conditions are encouraged to undergo regular examinations to monitor the retina for signs of deterioration. For these routine examinations an ophthalmoscope is used. An ophthalmoscope is a relatively inexpensive device that allows an examiner to directly observe the ocular fundus (the interior back wall of the eye that contains the retina). These devices are analog and do not allow the capture of digital imagery. Fundus cameras, on the other hand, are larger devices that o er high quality digital images. They do, however, come at an increased cost and are not practical for use in the eld. In this thesis the design and implementation of a system that digitises imagery from an ophthalmoscope is discussed. The main focus is the development of software algorithms to increase the quality of the images to yield results of a quality closer to that of a fundus camera. The aim is not to match the capabilities of a fundus camera, but rather to o er a cost-e ective alternative that delivers su cient quality for use in conducting routine monitoring of the aforementioned conditions. For the digitisation the camera of a mobile phone is proposed. The camera is attached to an ophthalmoscope to record a video of an examination. Software algorithms are then developed to parse the video frames and combine those that are of better quality. For the parsing a method of rapidly selecting valid frames based on colour thresholding and spatial ltering techniques are developed. Registration is the process of determining how the selected frames t together. Spatial cross-correlation is used to register the frames. Only translational transformations are assumed between frames and the designed algorithms focuses on estimating this relative translation in a large set of frames. Methods of optimising these operations are also developed. For the combination of the frames, averaging is used to form a composite image. The results obtained are in the form of enhanced grayscale images of the fundus. These images do not match those captured with fundus cameras in terms of quality, but do show a signi cant increase when compared to the individual frames that they consists of. Collectively a set of video frames can cover a larger region of the fundus than what they do individually. By combining these frames an e ective increase in the eld of view is obtained. Due to low light exposure, the individual frames also contain signi cant noise. In the results the noise is reduced through the averaging of several frames that overlap at the same location. / AFRIKAANSE OPSOMMING: Diabetiese- en hipertensiewe retinopatie is twee algemene oorsake van blindheid wat deur middel van die behandeling van die onderliggende oorsake voorkom kan word. Pasiënte met hierdie toestande word aangemoedig om gereeld ondersoeke te ondergaan om die toestand van die retina te monitor. 'n Oftalmoskoop word gebruik vir hierdie roetine ondersoeke. 'n Oftalmoskoop is 'n relatiewe goedkoop, analoë toestel wat 'n praktisyn toelaat om die agterste interne wand van die oog the ondersoek waar die retina geleë is. Fundus kameras, aan die ander kant, is groter toestelle wat digitale beelde van 'n hoë gehalte kan neem. Dit kos egter aansienlik meer en is dus nie geskik vir gebruik in die veld nie. In hierdie tesis word die ontwerp en implementering van 'n stelsel wat beelde digitaliseer vanaf 'n oftalmoskoop ondersoek. Die fokus is op die ontwikkeling van sagteware algoritmes om die gehalte van die beelde te verhoog. Die doel is nie om die vermoëns van 'n fundus kamera te ewenaar nie, maar eerder om 'n koste-e ektiewe alternatief te lewer wat voldoende is vir gebruik in die veld tydens die roetine monitering van die bogenoemde toestande. 'n Selfoonkamera word vir die digitaliserings proses voorgestel. Die kamera word aan 'n oftalmoskoop geheg om 'n video van 'n ondersoek af te neem. Sagteware algoritmes word dan ontwikkel om die videos te ontleed en om videogrepe van goeie kwaliteit te selekteer en te kombineer. Vir die aanvanklike ontleding van die videos word kleurband drempel tegnieke voorgestel. Registrasie is die proses waarin die gekose rame bymekaar gepas word. Direkte kruiskorrelasie tegnieke word gebruik om die videogrepe te registreer. Daar word aanvaar dat die videogrepe slegs translasie tussen hulle het en die voorgestelde registrasie metodes fokus op die beraming van die relatiewe translasie van 'n groot versameling videogrepe. Vir die kombinering van die grepe, word 'n gemiddeld gebruik om 'n saamgestelde beeld te vorm. Die resultate wat verkry word, word in die vorm van verbeterde gryskleur beelde van die fundus ten toon gestel. Hierdie beelde is nie gelykstaande aan die kwaliteit van beelde wat deur 'n fundus kamera geneem is nie. Hulle toon wel 'n beduidende verbetering teenoor individuele videogrepe. Deur dat 'n groot versameling videogrepe wat gesamentlik 'n groter area van die fundus dek gekombineer word, word 'n e ektiewe verhoging van data in die area van die saamgestelde beeld verkry. As gevolg van lae lig blootstelling van die individuele grepe bevat hul beduidende ruis. In die saamgestelde beelde is die ruis aansienlik minder as gevolg van 'n groter hoeveelheid data wat gekombineer is om sodoende die ruis uit te sluit.

Page generated in 0.0315 seconds