• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude et mise en œuvre de modules de puissance MOSFET SiC pour leurs futures utilisations dans des convertisseurs ferroviaires / Study and implementation of SiC MOSFET power modules for future utilisation in railway converters

Fabre, Joseph 07 November 2013 (has links)
Le Carbure de Silicium (SiC) va permettre de repousser les limites des convertisseurs dans trois directions : tenue en tension élevée, haute température de fonctionnement et forte vitesse de commutation. Aujourd’hui, les premiers modules MOSFET SiC sont disponibles sur le marché et semblent prometteurs. L’objectif de ces travaux de thèse consiste plus particulièrement à mettre en œuvre des montages permettant de caractériser ces premiers modules de puissance MOSFET SiC en vue de les utiliser dans les convertisseurs ferroviaires. Le premier chapitre est consacré à l’état de l’art d’une chaîne de traction de Tramway. C’est ce type de chaîne de traction sur lequel se concentrent les études des premières implantations de composants en SiC. Le deuxième chapitre présente un état de l’art des composants semi-conducteurs de puissance en SiC. Il rappelle tout d’abord les propriétés du matériau et détaille ensuite différentes structures de composants en SiC. Le troisième chapitre concerne les modélisations et les simulations de modules de puissance MOSFET SiC au sein d’une cellule de commutation. Les phases de commutation de ces composants sont étudiées en détail, les influences de différents paramètres sont mises en évidence et des simulations multi-physiques permettent de concevoir les bancs d’essais nécessaires à la caractérisation. Le quatrième chapitre présente les résultats des caractérisations statiques et dynamiques de modules de puissance MOSFET SiC. Ces résultats d’essai sont comparés à des modules IGBT Si de même calibre. Le cinquième chapitre est consacré à la mise en œuvre d’un banc d’essai utilisant la « méthode d’opposition ». Celui-ci permet de comparer les modules IGBT Si et les MOSFET SiC en fonctionnement onduleur grâce à des mesures électriques et calorimétriques. Le sixième et dernier chapitre présente des conclusions et donne des perspectives d’utilisation des composants MOSFET SiC dans les convertisseurs ferroviaires. Différents projets visant à utiliser des MOSFET SiC sur des applications ferroviaires y sont présentés. / Silicon Carbide (SiC) technology is pushing the limits of switching devices in three directions: higher blocking voltage, higher operating temperature and higher switching speed. Nowadays, samples of Silicon Carbide (SiC) MOSFET modules are available on the market and seem promising. The aim of the thesis is to characterize these first power modules thanks to dedicated test beds in order to use them in railway converters. The first chapter focuses on the state of the art of Tramway traction chain. It is this type of traction chain which is the target application of these SiC components. The second chapter presents a state of the art of the SiC devices. First, we recall the material properties and then we detail different structures of SiC components. The third chapter concerns modelling and simulations of SiC MOSFET power modules within a commutation cell. The switching phases of these components are studied in detail and the influences of various parameters are highlighted. Multi-physicals simulations allow designing test benches necessary for the characterization. The fourth chapter presents the results of static and dynamic characterizations of SiC MOSFET power modules. The test results are compared with Silicon IGBT modules of the same rating. The fifth chapter is dedicated to the achievement of a test bench based on the "opposition method". This test bench allows comparing Si IGBT and SiC MOSFET modules in a voltage source inverter (VSI) operation by using electrical and calorimetric measurement methods. The sixth and last chapter presents conclusions and provides outlook for SiC MOSFET components in railway converters. Different projects targeting to use SiC MOSFET on railway applications are presented.
2

Conception et réalisation d'un convertisseur multicellulaire DC/DC isolé pour application aéronautique / Design and development of an isolated multicell DC/DC power converter for aeronautical applications

Brandelero, Julio Cezar 28 May 2015 (has links)
L’électricité prend une place de plus en plus importante dans les systèmes énergétiques embarqués. L’électricité est une forme d’énergie très malléable, facile à transporter et réglable ou transformable avec un très faible taux de pertes. L’énergie électrique, associée à des convertisseurs statiques, est plus facile à maîtriser que, par exemple, l’énergie hydraulique et/ou pneumatique, permettant un réglage plus fin et une réduction des coûts de maintenance. L’évolution de la puissance dans les modèles avioniques est marquante. Avec le nombre croissant de charges électroniques, un avion plus électrique avec un réseau à courant alternatif inclurait un grand nombre de redresseurs AC/DC qui devront respecter les normes de qualité secteur. Une solution pour la réduction de la masse serait de préférer un réseau HVDC (High Voltage DC Bus). Sur les futurs modèles avioniques plus électriques, les concepteurs envisageront des conversions HVDC/DC à partir de l’unité appelée BBCU (Buck Boost Converter Unit). Dans ce cas d’étude, un réseau de distribution en tension continue (±270Vdc) est connecté à un réseau de sécurité basse tension (28Vdc) avec un échange bidirectionnel de puissance pouvant atteindre 10kW. Le convertisseur statique assurant cette liaison représente de nouveaux défis pour l’électronique de puissance en termes de fiabilité, sûreté, détection de panne, rendement et réduction de masse et de coût. Le dimensionnement du convertisseur doit prendre en compte une conception optimale, en aéronautique ce critère est la masse. Dans le processus de dimensionnement et d’optimisation du convertisseur, il est donc impératif de prendre en compte trois facteurs principaux : 1) l’évolution des topologies de conversion, 2) l’évolution des composants actifs et passifs et 3) l’intégration de puissance. La réunion de ces trois facteurs permettra ainsi la miniaturisation des convertisseurs statiques. Dans un premier temps, nous préciserons la démarche adoptée pour le dimensionnement d’un convertisseur en prenant en compte : les topologies actives, les filtres différentiels et le système de refroidissement. Les différents éléments qui composent le convertisseur sont décrits dans un langage informatique orienté objet. Des facteurs de performances seront également introduits afin de faciliter le choix des semi-conducteurs, des condensateurs et du dissipateur pour un convertisseur statique. Dans un deuxième temps, nous présenterons le fonctionnement d’une topologie multicellulaire DC/DC, isolée pour l’application proposée. Nous présenterons les avantages du couplage de différentes phases de ce convertisseur. Nous introduirons les différentes associations des cellules et leurs avantages, possibles grâce à l’isolement, comme la mise en série et en parallèle. Puisque la caractérisation des pertes des semi-conducteurs est essentielle pour le dimensionnement du convertisseur statique, nous proposerons deux approches : un modèle de simulation relativement simple et paramétré à l’aide de seules notices constructeurs ; et une méthode de mesure des pertes dans les semi-conducteurs qui est à la fois précise et compatible avec les composants les plus rapides. En ce qui concerne les composants magnétiques, une surface de réponse des matériaux ferrites sera présentée. Nous allons décrire, par le biais analytique et de simulation, des modèles pour la détermination du champ magnétique à l’intérieur du noyau et des ondulations de courant engendrés. Finalement, en profitant des modèles et des résultats obtenus dans les sections précédentes, nous montrerons le dimensionnement et la réalisation de chaque partie du convertisseur BBCU 100kHz / 10kW. Une perspective d’un design idéal est également présentée. / The electricity is taking a more important place in the embedded systems. The electricity is a very moldable form of energy, easy to transport and adjustable or transformed with a very low losses. The electrical energy, associated with power converters, is easier to control than hydraulic and/or pneumatic energies for example, allowing a finer regulation and a cost cutting of maintenance. The installed power in the avionic models is growing fast. With the increasing number of electronic loads, a more electrical aircraft with an AC network would include a large number of rectifiers AC/DC which will have to respect the quality standards. A solution for the reduction of the mass would be to prefer a HVDC network (High Voltage DC BUS). On the future more electrical aircrafts, the designers will be facing a HVDC/DC power conversion. This is the role of the unit called BBCU (Buck Boost Converter Unit). In our case of study, a distribution network in DC voltage (± 270Vdc) is connected to a security low-voltage network (28Vdc) which includes a bidirectional power exchanges achieving 10kW. The power converter for this connection gives new challenges for the power electronics in terms of reliability, safety, failure detection, efficiency and reduction of mass and cost. The design of the power converter needs to take into account for an optimal design. It is thus imperative to take into account three main factors: 1) the evolution of the power topologies 2) the evolution of the active and passive devices and 3) the power integration. The meeting of these three factors will allow the miniaturization of the power converters. At first, the adopted approach for designing power converters, taking into account the power topology, the differential filters and the cooling system are presented. The various elements which compose the power converter are described in an Object-Oriented Programming. The performance factors will be introduced to facilitate the choice of semiconductors, capacitors and heat-sinks. Secondly, the operation phases of a multicellular isolated DC/DC topology for the proposed application are presented. A discussion of the advantages of the magnetic coupling is also introduced. Thanks to the isolation, different associations of switching cells, series or/and parallel connection, are possible. Knowing the losses of power semiconductors is an essential step to design a power converter, thus two approaches are proposed: 1) a simulation model using a relatively simple model with the datasheets information; and 2) a losses measurement method which is precise and compatible with the fastest devices. As regards the magnetic components, a response surface of ferrite materials will be presented. Some models for the determination of the magnetic field inside the core and the current ripple are also described. Finally, by taking advantage of models and results obtained in the previous sections, the design and the realization of each party of the BBCU power converter 100kHz / 10kW is showed. A perspective of an ideal design is also presented.

Page generated in 0.0756 seconds