Spelling suggestions: "subject:"optic childengrowth & development"" "subject:"òptic childengrowth & development""
1 |
Regulations of axon routings at the optic chiasm of mouse embryos.January 1999 (has links)
Chung Kit Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 90-104). / Abstracts in English and Chinese. / Chapter Chapter 1 --- General Introduction --- p.1-22 / Chapter Chapter 2 --- Expression of Chondroitin Sulfate Proteoglycans (CSPGs) in the Chiasm of Mouse Embryos / Introduction --- p.23-24 / Materials and Methods --- p.25 -27 / Results --- p.28-33 / Discussion --- p.34-40 / Figures --- p.41-45 / Chapter Chapter 3 --- Effects on Axon Routing after Removal of Chondroitin Sulfate Proteoglycans by Enzymatic Digestion / Introduction --- p.46 -47 / Materials and Methods --- p.48 -50 / Results --- p.57 / Discussion --- p.57-61 / Figures --- p.62-66 / Chapter Chapter 4 --- Immediate Effects of Prenatal Monocular Enucleation on the Cellular and Molecular Environment in the Development of Retinofugal Pathway / Introduction --- p.67-69 / Materials and Methods --- p.70-72 / Results --- p.73.77 / Discussion --- p.78-82 / Figures --- p.83-86 / Chapter Chapter 5 --- General Conclusion --- p.87-89 / References --- p.90 -104
|
2 |
Axon patterning in the mouse retinofugal pathway.January 2002 (has links)
Leung Kin Mei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 106-125). / Abstracts in English and Chinese. / Chapter CHAPTER 1 --- GENERAL INTRODUCTION --- p.1-11 / Chapter CHAPTER 2 --- ENZYMATIC REMOVAL OF CHONDROITIN SULFATES ABOLISHES THE AGE-RELATED ORDER IN THE OPTIC TRACT OF MOUSE EMBRYOS / INTRODUCTION --- p.12-13 / MATERIALS AND METHODS --- p.13-18 / RESULTS --- p.18-24 / DISCUSSION --- p.24-29 / FIGURES --- p.30-39 / Chapter CHAPTER 3 --- EXPRESSION OF PHOSPHACAN AND NEUROCAN IN THE DEVELOPING MOUSE RETINOFUGAL PATHWAY / INTRODUCTION --- p.40-42 / MATERIALS AND METHODS --- p.42-43 / RESULTS --- p.44-49 / DISCUSSION --- p.49-55 / FIGURES --- p.56-61 / Chapter CHAPTER 4 --- HEPARAN SULFATE PROTEOGLYCAN EXPRESSION IN THE OPTIC CHIASM OF MOUSE EMBRYOS / INTRODUCTION --- p.62-63 / MATERIALS AND METHODS --- p.63-65 / RESULTS --- p.66-70 / DISCUSSION --- p.70-76 / FIGURES --- p.77-82 / Chapter CHAPTER 5 --- EXPRESSION OF NEURAL CELL ADHESION MOLECULES IN THE CHIASM OF MOUSE EMBRYOS / INTRODUCTION --- p.83-85 / MATERIALS AND METHODS --- p.85-88 / RESULTS --- p.88-92 / DISCUSSION --- p.92.95 / FIGURES --- p.96-102 / Chapter CHAPTER 6 --- GERNEAL CONCLUSION --- p.103-105 / REFERENCES --- p.106-125
|
3 |
Molecules signaling axon growth during development of mouse optic pathway. / CUHK electronic theses & dissertations collectionJanuary 2004 (has links)
Hao Yanli. / "July 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 113-134). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
4 |
Molecules involved in the retinal axon patterning at the optic chiasm of mouse embryos. / CUHK electronic theses & dissertations collectionJanuary 2002 (has links)
by Ling Lin. / "November 2002." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 149-168). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
5 |
Differential responses of mouse nasal and temporal retinal neurites to chondroitin sulphates: the role of protein kinase C.January 2005 (has links)
Lam Shi Ying Joyce. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 107-114). / Abstract in English and Chinese. / Chapter CHAPTER 1 --- GENERAL INTRODUCTION --- p.1-19 / Chapter CHAPTER 2 --- EXPRESSION OF PROTEIN KINASE C (PKC) ISOFORMS IN THE VENTRAL TEMPORAL (VT) AND DORSAL NASAL (DN) RETINAL GROWTH CONES OF MOUSE EMBRYOS / INTRODUCTION --- p.20-22 / MATERIALS AND METHODS --- p.22-24 / RESULTS --- p.24-31 / DISCUSSION --- p.31-37 / FIGURES --- p.38-46 / Chapter CHAPTER 3 --- EFFECTS ON MOUSE NASAL AND TEMPORAL RETINAL NEURITES TO CHONDROITIN SULPHATES (CS) AFTER ALTERATION OF PKC ACTIVITY / INTRODUCTION --- p.47-48 / MATERIALS AND METHODS --- p.49-51 / RESULTS --- p.51-59 / DISCUSSION --- p.60-67 / FIGURES --- p.68-74 / Chapter CHAPTER 4 --- EFFECTS ON AXON ROUTING AFTER ALTERATION OF PKC ACTIVITY ON GUIDANCE OF RETINAL GANGLION CELL AXONS AT THE OPTIC CHIASM OF MOUSE EMBRYOS / INTRODUCTION --- p.75-76 / MATERIALS AND METHODS --- p.77-80 / RESULTS --- p.80-89 / DISCUSSION --- p.89-95 / FIGURES --- p.96-103 / Chapter CHAPTER 5 --- GENERAL CONCLUSION --- p.104-106 / REFERENCES --- p.107-114
|
6 |
Investigations of factors that control retinal axon growth during mouse optic pathway development. / CUHK electronic theses & dissertations collectionJanuary 2010 (has links)
Chiasm cells, which include glia and neurons, are generated early before any retinal axon arrives at the midline of the mouse ventral diencephalon. These cells have been shown to affect retinal axon growth and patterning in the optic chiasm. In this study, we used EdU (5-ethyny1-2'-deoxyuridine) for birthdating these chiasm cells, aiming to find out when these cells are generated; then we tried to trace their fates at later stages of development. EdU injection at embryonic day (E) 9.5 to El 1 labeled a number of chiasmatic neurons and radial glial cells at E13, which were immunoreactive for SSEA-1 and RC2, respectively. After colocalization studies, we found that most of these neurons were born as early as E9.5, while a large number of radial glial cells were born as from El 1. Both E9.5-born chiasmatic neurons and Ell-born radial glia decreased by E14-E16; the radial glia even disappeared finally from the midline. Furthermore, we found that some chiasmatic neurons underwent apoptotic cell death as from El 4, and that the radial glia likely differentiated into other cell types after finishing their retinal axon guidance mission at the midline. So it is reasonable that some of the earliest born chiasm cells disappear during development. / During development, retinal ganglion cell axons grow from the eye to the ventral diencephalon, where axons from the two eyes converge and segregate into crossed and uncrossed projections, forming the optic chiasm. This pattern is critical for binocular vision. Although significant progress has been obtained over the past decades, how retinal axon growth and guidance are regulated at the chiasm is largely unknown. Our research will focus on those problems. / In the last part of this thesis, we investigated the retinal axon pathway in the ventral diencephalon of the Sox10Dom mutant embryos and gamma-crystallin mutant embryos. Our findings indicate that Sox10 may not contribute to axon guidance in the developing optic pathway whereas gammaA-crystallin may only play a role in the later uncrossed axons. / N-methyl-D-aspartate (NMDA) receptor is one of the ionotropic glutamate receptors, which are important in synaptic plasticity, apart from implications in dendritic spine remodeling, neurite outgrowth, elongation and branching and glutamate neurotoxicity. There are several subtypes of NMDA receptor channel subunits, NR1, NR2A-D, NR3A&B. The functional diversity of NMDA receptor resides in the different assembly of subunits. In this study, we used RT-PCR to analyze the mRNA expression of all the NMDA receptor subunits in mouse embryos. After that we chose the NR1, NR2B and NR3A antibodies to investigate NMDA receptor subunit expression in the optic pathway during mouse optic pathway development. Using immunohistochemistry, we found that NR1, NR2B and NR3A were expressed in the mouse retina and optic pathway as from E13 when the optic chiasm is forming. Expression of the NMDA receptor subunits were found in the inner cell layers and along retinal axons. Colocalization studies showed that NR1, NR2B and NR3A were localized on the ganglion cells and their axons. In the ventral diencephalon, these subunits were expressed extensively, but NR1 and NR3A were particularly strong along the optic nerve and optic tract. Furthermore, to identify the function of NMDA receptor during optic chiasm development, we cultured E14 retinal explants on laminin and poly-D-ornithine in the presence of the NMDA receptor antagonists MK-801 or Dextrorphan-D-tartrate. These two antagonists can significantly inhibit the retinal axon outgrowth, suggesting that the NMDA receptor promotes retinal axon outgrowth in the retinofugal pathway during optic chiasm development. / Li, Jia. / Adviser: Chan Sun On. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 145-158). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
Page generated in 0.1118 seconds