• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Software Tool for Mid-Spatial Frequency Analysis

Eriksson, Albert January 2021 (has links)
The manufacturing of optical components, such as lenses or mirrors, consists of numeroussteps that are essential to the performance of the fnished optical system, such as the specifcation ofthe optical surface. For a longer period, the main focus has been in identifying and restricting thenegative effects of the low and high spatial frequency content of the surface. However, as technologyand optical equipment has become more advanced, the effects of the mid-spatial frequencies havebeen studied more, and continue to be a topic of research. As of now, there is still a need for methodsthat accurately predict and analyse the regime of mid-spatial frequencies, such that they can becontrolled during the specifcation phase, successfully limiting the need of post-processing steps.This work introduces a software tool, specifcally designed to approach this problem, which wasto be developed in Python as a contribution to the existing Optical Scripting Library at OHB. Byspecifying an optical component in terms of a Power Spectral Density function, together with thecontributions from different spatial frequency domains and the application of a ripple patterns, thissoftware tool can generate pseudo-random optical surfaces, which maintains the input specifcations.Furthermore, a Dynamic Link Library fle was developed, sharing the same functionality as thePython implementation, allowing for simulations using Zemax OpticStudio. Using the software tool,it was found that the relative error between input and output measurements were approximately0.78%, in terms of the Power Spectral Density Function. In addition, the result of analysing one of thetwo test cases indicate that the software tool is effective in predicting the infuence of mid-spatialfrequency errors, fulflling a previously measured predicition. The second test case proved that thesoftware tool can be used for mimicing surfaces of real measurements, holding the same specifcations.

Page generated in 0.0207 seconds