• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Fabrication, and Testing of an Integrated Optical Hydrogen and Temperature Sensor

Carriere, Nicholas 21 November 2013 (has links)
In this thesis, the details of the design, fabrication, and characterization of an optical, integrated hydrogen gas and temperature sensor are explored. The hydrogen sensor is implemented by coating a ridge waveguide with a thin layer of palladium and shows very good response time and detection response for hydrogen concentrations ranging from 0.5-4%, both of which compare very favourably to similar existing technologies. Multiple film thicknesses were tested and it was found that thinner films give a faster response time at the expense of a reduced detection response. The temperature sensor is implemented with a multi-mode interferometer coupled ring resonator and has a sensing range of 100 K with good sensitivity. Both sensors are fabricated on a silicon-on-insulator platform and could easily be integrated together onto a single chip as part of an optical nose technology that would have the ability to sense multiple environmental factors simultaneously.
2

Design, Fabrication, and Testing of an Integrated Optical Hydrogen and Temperature Sensor

Carriere, Nicholas 21 November 2013 (has links)
In this thesis, the details of the design, fabrication, and characterization of an optical, integrated hydrogen gas and temperature sensor are explored. The hydrogen sensor is implemented by coating a ridge waveguide with a thin layer of palladium and shows very good response time and detection response for hydrogen concentrations ranging from 0.5-4%, both of which compare very favourably to similar existing technologies. Multiple film thicknesses were tested and it was found that thinner films give a faster response time at the expense of a reduced detection response. The temperature sensor is implemented with a multi-mode interferometer coupled ring resonator and has a sensing range of 100 K with good sensitivity. Both sensors are fabricated on a silicon-on-insulator platform and could easily be integrated together onto a single chip as part of an optical nose technology that would have the ability to sense multiple environmental factors simultaneously.

Page generated in 0.0619 seconds