Spelling suggestions: "subject:"0ptical bandgap"" "subject:"aoptical bandgap""
1 |
A study of the suitability of amorphous, hydrogenated carbon (a-C:H) for photovoltaic devicesMaldei, Michael January 1997 (has links)
No description available.
|
2 |
Synthesis and Luminescence of Zinc Oxide Nanorods-Blended Thiopheno-Organosilicon PolymersTyombo, Nolukholo January 2017 (has links)
Magister Scientiae - MSc (Chemistry) / The increasing cost of fossil fuel energy production and its implication in environmental
pollution and climate change created high demand for alternative and renewable sources of
energy. This has led to great interest in research in the field of photovoltaic or solar cells Due to
the abundance of sunlight, the technology is sustainable, non-polluting and can be implemented
at places where power demand is needed, for example in rural areas. Solar cell devices that have
been commercialized are currently based on silicon technology, involving the use of
monocrystalline, polycrystalline and amorphous silicon. Although they produce highly efficient
solar cells, the cost of Si solar cells is too high. Second generation solar cell materials such as
cadmium telluride and third generation materials such as perovskites and organic polymers have
been receiving much attention recently. However, they lack the efficiency of Si solar cells. This
research proposes the development of high energy conservation photovoltaic cells from novel
low-cost organosilicon polymers. The aim was to develop novel highly branched organosilane
polymers such as poly(3-hexythiophene), polydi(thien-2-yl)dimethylsilane, poly(3-hexyl-
[2,2'] bithiophenyl-5-yl)-dimethyl-thiophen-2yl-silane) as electron donors along with zinc oxide
nanorod as the electron acceptor which were able to bring the efficiency of the resultant
photovoltaic cell close to that of current Si solar cell. / 2021-08-31
|
3 |
Engineering of the Optical, Structural, Electrical, and Magnetic Properties of Oxides and Nitrides of In-Ga-Zn Thin Films Using NanotechnologyEbdah, Mohammad A. 25 July 2011 (has links)
No description available.
|
4 |
Optical active thin films on cover glass increasing the efficiency of photovoltaic modules.Johansson, Wilhelm January 2018 (has links)
Thin film coatings of ZnO, TiO2, CeOX and BiOX have been deposited on soda lime silica glass through spray pyrolysis. The effects on the optical properties of the coated glass, as well as the possible impacts on the life expectancy and energy efficiency of PV-modules have been studied. ZnO and TiO2 coatings both reduced the transmission of UV radiation of wavelengths destructive to PV-modules. Therefore, both have the potential to increase the life expectancy of PV-modules if used on cover glass. The ZnO thin film also showed an increase in photoluminescence at 377 nm when radiated with UV radiation of 325 nm while TiO2 reduced the photoluminescence. ZnO coatings on the cover glass have the potential to increase the efficiency of PV-modules in addition to UV protection. No CeOX or BiOX films were found to be deposited with the method used. The ZnO and TiO2 coated samples showed a decrease in transmission of light, due to increased reflection and possibly scattering. This needs to be addressed if these kinds of coatings are going to be beneficial for Si PV-modules.
|
Page generated in 0.0669 seconds