Spelling suggestions: "subject:"0ptical ceramics"" "subject:"aoptical ceramics""
1 |
Properties of Infrared Transparent Optical Ceramics via Density Functional TheoryGeorge Maxwell Nishibuchi (16379301) 15 June 2023 (has links)
<p> Ceramics with novel optical properties have enabled substantial advances in technologies ranging from medical imaging to fish finding. Further development of optically transparent ceramics will allow the creation of novel devices with new capabilities, capable of functioning in previously inconceivable operating conditions. Hypersonic aerospace applications often utilize IR imaging for guiding and target identification. Sensors utilized in the detection and measurement of IR radiation cannot withstand the extreme environments intrinsic to hypersonic travel and thus must be protected from the surrounding environment while minimizing distortion of incident IR radiation. Towards this end, IR transparent ceramics have been developed that can withstand the extreme environments of hypersonic travel, while maintaining their optical and mechanical properties. </p>
<p>The binary II-VI semiconductor Zinc Sulfide (ZnS) has been primarily utilized for this application due to its strong transmission of 8-10 μ𝑚 IR radiation in combination with the stability of its mechanical properties at elevated temperatures encountered at high airspeeds. While it has proven to be a capable material for the application, previous testing has found it to degrade and fail catastrophically when exposed to sand or water at subsonic speeds. This initiated a search for materials with similar IR transmittance properties to ZnS but with higher strength and resistance to degradation. </p>
<p>The diamond allotrope of carbon has been found to have the most optimal mechanical properties for this application, but due to obvious limitations from cost and processing in bulk, it is not considered a realistic option for the application. The ternary sulfide Calcium Lanthanum Sulfide (CLS, CaLa2S4) was discovered in the early 1980s, with an extended IR transmission window of 8-12 μ𝑚 in contrast to the 8-10 μ𝑚 transmission window of ZnS. In combination with more favorable mechanical properties than ZnS, CaLa2S4 has become a promising candidate towards the manufacture of stronger IR windows for aerospace applications. To expand the existing body of knowledge on this ternary sulfide and towards the advancement of IR window materials, this work seeks to utilize density functional theory to characterize defects in CLS to guide future investigations of this material system.</p>
|
2 |
Ytterbium-doped Fiber-seeded Thin-disk Master Oscillator Power Amplifier Laser SystemWillis-Ott, Christina 01 January 2013 (has links)
Lasers which operate at both high average power and energy are in demand for a wide range of applications such as materials processing, directed energy and EUV generation. Presented in this dissertation is a high-power 1 μm ytterbium-based hybrid laser system with temporally tailored pulse shaping capability and up to 62 mJ pulses, with the expectation the system can scale to higher pulse energies. This hybrid system consists of a low power fiber seed and pre-amplifier, and a solid state thin-disk regenerative amplifier. This system has been designed to generate high power temporally tailored pulses on the nanosecond time scale. Temporal tailoring and spectral control are performed in the low power fiber portion of the system with the high pulse energy being generated in the regenerative amplifier. The seed system consists of a 1030 nm fiber-coupled diode, which is transmitted through a Mach-Zehnder-type modulator in order to temporally vary the pulse shape. Typical pulses are 20-30 ns in duration and have energies of ~0.2 nJ from the modulator. These are amplified in a fiber pre-amplifier stage to ~100 nJ before being used to seed the free-space Yb:YAG thin-disk regenerative amplifier. Output pulses have maximum demonstrated pulse energies of 62 mJ with 20 ns pulse after ~250 passes in the cavity. The effects of thermal distortion in laser and passive optical materials are also. Generally the development of high power and high energy lasers is limited by thermal management strategies, as thermally-induced distortions can degrade laser performance and potentially cause catastrophic damage. Novel materials, such as optical ceramics, can be used to mitigate thermal distortions; however, thorough analysis is required to optimize their fabrication and minimize thermal distortions. iv Using a Shack-Hartmann wavefront sensor (SHWFS), it is possible to analyze the distortion induced in passive and doped optical elements by high power lasers. For example, the thin-disk used in the regenerative amplifier is examined in-situ during CW operation (up to 2 kW CW pump power). Additionally, passive oxide-based optical materials and Yb:YAG optical ceramics are also examined by pumping at 2 and 1 μm respectively to induce thermal distortions which are analyzed with the SHWFS. This method has been developed as a diagnostic for the relative assessment of material quality, and to grade differences in ceramic laser materials associated with differences in manufacturing processes and/or the presence of impurities. In summation, this dissertation presents a high energy 1 μm laser system which is novel in its combination of energy level and temporal tailoring, and an analysis of thermal distortions relevant to the development of high power laser systems.
|
Page generated in 0.0553 seconds