Spelling suggestions: "subject:"0ptical c.design"" "subject:"0ptical candesign""
1 |
Co-conception des systemes optiques avec masques de phase pour l'augmentation de la profondeur du champ : evaluation du performance et contribution de la super-résolution / Co-design of optical systems with phase masks for depth of field extension : performance evaluation and contribution of superresolutionFalcon Maimone, Rafael 19 October 2017 (has links)
Les masques de phase sont des dispositifs réfractifs situés généralement au niveau de la pupille d’un système optique pour en modifier la réponse impulsionnelle (PSF en anglais), par une technique habituellement connue sous le nom de codage de front d’onde. Ces masques peuvent être utilisés pour augmenter la profondeur du champ (DoF en anglais) des systèmes d’imagerie sans diminuer la quantité de lumière qui entre dans le système, en produisant une PSF ayant une plus grande invariance à la défocalisation. Cependant, plus le DoF est grand plus l’image acquise est floue et une opération de déconvolution doit alors lui être appliquée. Par conséquent, la conception des masques de phase doit prendre en compte ce traitement pour atteindre le compromis optimal entre invariance de la PSF à la défocalisation et qualité de la déconvolution.. Cette approche de conception conjointe a été introduite par Cathey et Dowski en 1995 et affinée en 2002 pour des masques de phase continus puis généralisée par Robinson et Stork en 2007 pour la correction d’autres aberrations optiques.Dans cette thèse sont abordés les différents aspects de l’optimisation des masques de phase pour l’augmentation du DoF, tels que les critères de performance et la relation entre ces critères et les paramètres des masques. On utilise la « qualité d’image » (IQ en anglais), une méthode basée sur l’écart quadratique moyen définie par Diaz et al., pour la co-conception des divers masques de phase et pour évaluer leur performance. Nous évaluons ensuite la pertinence de ce critère IQ en comparaison d’autres métriques de conception optique, comme par exemple le rapport de Strehl ou la fonction de transfert de modulation (MTF en anglais). Nous nous concentrons en particulier sur les masques de phase annulaires binaires, l’étude de leur performance pour différents cas comme l’augmentation du DoF, la présence d’aberrations ou l’impact du nombre de paramètres d’optimisation.Nous appliquons ensuite les outils d’analyse exploités pour les masques binaires aux masques de phase continus qui apparaissent communément dans la littérature, comme les masques de phase polynomiaux. Nous avons comparé de manière approfondie ces masques entre eux et aux masques binaires, non seulement pour évaluer leurs avantages, mais aussi parce qu’en analysant leurs différences il est possible de comprendre leurs propriétésLes masques de phase fonctionnent comme des filtres passe-bas sur des systèmes limités par la diffraction, réduisant en pratique les phénomènes de repliement spectral. D’un autre côté, la technique de reconstruction connue sous l’appellation de « superresolution » utilise des images d’une même scène perturbées par du repliement de spectre pour augmenter la résolution du système optique original. Les travaux réalisés durant une période de détachement chez le partenaire industriel de la thèse, KLA-Tencor à Louvain, Belgique, illustrent le propos. A la fin du manuscrit nous étudions la pertinence de la combinaison de cette technique avec l’utilisation de masques de phase pour l’augmentation du DoF. / Phase masks are wavefront encoding devices typically situated at the aperture stop of an optical system to engineer its point spread function (PSF) in a technique commonly known as wavefront coding. These masks can be used to extend the depth of field (DoF) of imaging systems without reducing the light throughput by producing a PSF that becomes more invariant to defocus; however, the larger the DoF the more blurred the acquired raw image so that deconvolution has to be applied on the captured images. Thus, the design of the phase masks has to take into account image processing in order to reach the optimal compromise between invariance of PSF to defocus and capacity to deconvolve the image. This joint design approach has been introduced by Cathey and Dowski in 1995 and refined in 2002 for continuous-phase DoF enhancing masks and generalized by Robinson and Stork in 2007 to correct other optical aberrations.In this thesis we study the different aspects of phase mask optimization for DoF extension, such as the different performance criteria and the relation of these criteria with the different mask parameters. We use the so-called image quality (IQ), a mean-square error based criterion defined by Diaz et al., to co-design different phase masks and evaluate their performance. We then compare the relevance of the IQ criterion against other optical design metrics, such as the Strehl ratio, the modulation transfer function (MTF) and others. We focus in particular on the binary annular phase masks, their performance for various conditions, such as the desired DoF range, the number of optimization parameters, presence of aberrations and others.We use then the analysis tools used for the binary phase masks for continuous-phase masks that appear commonly in the literature, such as the polynomial-phase masks. We extensively compare these masks to each other and the binary masks, not only to assess their benefits, but also because by analyzing their differences we can understand their properties.Phase masks function as a low-pass filter on diffraction limited systems, effectively reducing aliasing. On the other hand, the signal processing technique known as superresolution uses several aliased frames of the same scene to enhance the resolution of the final image beyond the sampling resolution of the original optical system. Practical examples come from the works made during a secondment with the industrial partner KLA-Tencor in Leuven, Belgium. At the end of the manuscript we study the relevance of using such a technique alongside phase masks for DoF extension.
|
Page generated in 0.0513 seconds