• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ion-beam analysis of optical coatings.

Messerly, Michael Joseph. January 1987 (has links)
Rutherford backscattering spectrometry (RBS) is shown to be an elegant, powerful tool for the chemical characterization of optical coatings. RBS studies of several thin film materials are presented to illustrate the technique's unique abilities, and to show how RBS is best exploited in investigations of thin film stoichiometry and diffusion. The text begins with an introduction to optical coatings and the practical problems encountered in their implementation. The basic principles of RBS are discussed, and the technique is compared to other popular surface analysis tools. The introductory material concludes with a chapter devoted to specific techniques for RBS data and error analysis, including the derivation of a simple formula for determining the optimum thickness of multi-element samples. The accurate stoichiometric measurements provided by RBS give new insights into the chemical structure of ion-bombarded MgF₂ coatings. The analysis shows that lightly-bombarded coatings contain a small oxygen fraction (< 6%), and the absence of this oxygen in opaque, heavily-bombarded samples implies the oxygen compensates for fluorine deficiencies and is therefore an essential ingredient for transparent films. This beneficial oxygen appears to diffuse into the coatings along columnar voids, and the implied compromise between packing density and transparency is discussed. The final chapter takes advantage of the nondestructive depth-profiles provided by RBS. We present the first direct experimental verification of the interfacial oxide layer responsible for the superior adhesion of aluminum to glass, and show that contrary to popular belief, the layer is not an artifact of oxygen adsorbed during the aluminum's evaporation. We then discuss the diffusion of copper through silver films, and show that the migration is enhanced by exposure to the RBS probe beam. Finally, we consider the diffusion of carbon, from graphite substrates, into the voids of porous coatings during the RBS measurements. This effect, like the enhanced copper diffusion, is consistent with a low temperature, measurement-induced anneal; however, we show that the migrant carbon does not alter the chemical structure of the coatings, but instead serves as a convenient, non-intrusive indicator of film porosity.

Page generated in 0.1106 seconds