Spelling suggestions: "subject:"0ptical engineering."" "subject:"aoptical engineering.""
1 |
Raman Spectroscopy of Colloidal Nanoparticles in Liquid Core Photonic Crystal FibersIrizar, Juan 30 July 2009 (has links)
This Masters thesis examines Raman enhancements in Liquid Core Waveguides for the purpose of studying dilute solutions of Colloidal Nanoparticles.
|
2 |
Raman Spectroscopy of Colloidal Nanoparticles in Liquid Core Photonic Crystal FibersIrizar, Juan 30 July 2009 (has links)
This Masters thesis examines Raman enhancements in Liquid Core Waveguides for the purpose of studying dilute solutions of Colloidal Nanoparticles.
|
3 |
Replicating the Blue Wool Response Using a Smartphone SpectroradiometerUlanch, Rachel N., Ulanch, Rachel N. January 2017 (has links)
A spectroradiometer was developed using the rear camera of the Samsung S7 smartphone for replicating the response of blue wool, a light comparative fading test from the textile industry that was adopted by the art conservation community in the 1960s. This technique was regarded as a cost effective, readily available comparative standard for understanding lightfastness of museum objects, but not an end all solution. Many other solutions have been found since the suggestion of the blue wool standard. Including the Canadian Light Damage Calculator and Lightcheck® ,which are comparator guides for lighting museum objects. The Berlin model for comparing tested spectral data is taken with expensive equipment, to a database to determine an objects sensitivity. Microfadeometry that directly tests the object with a 0.4-mm diameter focused Xenon source that deteriorates the artwork. None however have been able to completely replace the vetted, cost effective, easy to use blue wool standard for determining the sensitivity of museum and gallery objects, but a solution is needed.
The solution is a designed and tested smartphone spectroradiometer attachment that measures the illumination and reflectance spectrum of museum and gallery objects to deduce an absorption spectrum that can be correlated to an expected blue wool response under the same conditions. The attachment for the phone is made from off the shelf and 3D printed parts. It has measured the deterioration of blue wool under a high intensity source and can predict the expected time for a blue wool specimen to visibly fade under the illumination of museum LED lighting.
This thesis covers the design, modeling and testing experiment for the smartphone spectroradiometer that currently has a resolution of ± 7 nm, a spectral range from 393 to 650 nm with five orders of magnitude and an absolute radiometric error of 27.5% with the possibility of room for improvement. This includes increasing the accuracy of the modeled spectrum of the sun used for calibration, applying more advanced noise removal techniques, applying filters in post processing for better resolution and of course using a smartphone that takes raw images and can have its optical image stabilizer turned off during manual mode.
|
4 |
Tolerancing of optical systemsAdams, Geoffrey Peter January 1987 (has links)
No description available.
|
5 |
INVESTIGATION TO A COST-EFFECTIVE 3D MICROMACHINING METHODZhang, Hao 29 August 2013 (has links)
No description available.
|
6 |
Generation of ultrashort optical pulses with high peak power by monolithic laser diodesGuo, Xuhan January 2014 (has links)
No description available.
|
7 |
Engineering photonic entanglement and its practical applicationsFraine, Andrew 08 April 2016 (has links)
The quantum description of light offers a unique set of optical effects that has led to promising applications beyond those described by classical physics. Although well-defined quantum states of light do not persist in typical classical environments, phenomena such as entanglement often enhance optical approaches to communication, measurement, and sensing. With the emergence of new tasks in classical and quantum optical technology, new tools are required that must be specifically engineered including the generation of quantum states. This thesis is concerned with three principle tasks in engineering and implementing entangled photonic states. First, the use of frequency anti-correlated and polarization entangled two-photon states generated during spontaneous parametric down conversion (SPDC) to precisely evaluate optical delays with quantum interferometry is demonstrated in a realistic commercially available optical telecommunication device. Second, the study of correlated orbital angular momentum (OAM) states for efficient object identification is presented. Finally, experimental efforts towards the development of sources for entangled weak coherent states are discussed.
The generation of broadband entangled states leading to well-defined second order interference patterns is a necessary step for the application of low coherence quantum interferometry as a metrological device. The flexibility of non-uniformly chirped periodically poled nonlinear crystals offers a rich set of tools for precise state engineering. The experimental evaluation of a broadband source of polarization entanglement is presented. In addition, design considerations for applications that require optimized quantum interference features are discussed along with a numerical investigation of the limits of quantum interferometry with even order dispersion cancellation.
We present an experimental demonstration of correlated OAM sensing exploiting the two-dimensional and correlated nature of states produced during SPDC projected onto the OAM basis. Efficient object recognition through the identification of azimuthal symmetries of arbitrary objects is achieved by observing the full two-photon joint OAM spectrum and focusing on non-conserved OAM components not found in the natural OAM spectrum of SPDC.
Finally, quantum key distribution (QKD) is currently the most successful quantum optical application; however, a limiting trade off between the achievable rates and distances confines the approach to niche applications. The generation of entangled coherent states has been proposed to transition QKD into a new regime that would set aside single photons and two-photon entangled states for higher intensity coherent pulses. The key technical limitation that has prohibited the demonstration of such states is a reliable source of single-photon cross phase modulation. The plausibility and experimental efforts towards creating such an environment in a solid state device is presented.
|
8 |
Multi-Modal Imaging Techniques for Early Cancer DiagnosticsBedard, Noah 06 September 2012 (has links)
Cancer kills more Americans under the age of 75 than any other disease. Although most cancers occur in epithelial surfaces that can be directly visualized, the majority of cases are detected at an advanced stage. Optical imaging and spectroscopy may provide a solution to the need for non-invasive and effective early detection tools. These technologies are capable of examining tissue over a wide range of spatial scales, with widefield macroscopic imaging typically spanning several square-centimeters, and high resolution in vivo microscopy techniques enabling cellular and subcellular features to be visualized. This work presents novel technologies in two important areas of optical imaging: high resolution imaging and widefield imaging. For subcellular imaging applications, new high resolution endomicroscope techniques are presented with improved lateral resolution, larger field-of-view, increased contrast, decreased background signal, and reduced cost compared to existing devices. A new widefield optical technology called multi-modal spectral imaging is also developed. This technique provides real-time in vivo spectral data over a large field-of-view, which is useful for detecting biochemical alterations associated with neoplasia. The described devices are compared to existing technologies, tested using ex vivo tissue specimens, and evaluated for diagnostic potential in a multi-patient oral cancer clinical trial.
|
9 |
Diffractive Optical Element Design for Lateral Spectrum Splitting PhotovoltaicsVorndran, Shelby D. January 2016 (has links)
In this work, two distinct types of Diffractive Optical Elements (DOEs) are designed to laterally distribute the solar spectrum across multiple photovoltaic (PV) cells. Each PV cell receives a spectral band near its bandgap energy to maximize overall solar-to-electric conversion efficiency of the system. The first DOE is an off-axis volume holographic lens. Design parameters include lateral grating period and slant angle, index modulation, film thickness, and control of swelling and index modulation attenuation in the film development process. Diffraction efficiency across the holographic lens is simulated using Rigorous Coupled Wave Analysis (RCWA). A full system model is created, and non-sequential raytracing is performed. Performance is evaluated under AM 1.5 conditions and annual insolation in Tucson, AZ, and Seattle, WA. A proof-of-concept off-axis holographic lens is fabricated and its performance is measured to confirm the optical properties of this system. The second DOE is an algorithmically-designed freeform surface relief structure. The Gerchberg-Saxton design algorithm is expanded to consider multiple wavelengths, resulting in a Broadband Gerchberg-Saxton (BGS) algorithm. All design variables are evaluated in a parametric study of the algorithm. Several DOE designs are proposed for spectrum splitting, and two of these designs are fabricated and measured. Additional considerations, such as finite sampling of the discrete Fourier transform, fabrication error, and solar divergence are addressed. The dissertation will conclude with a summary of spectrum splitting performance of all proposed DOEs, as well as a comparison to ideal spectrum splitting performance and discussion of areas for improvement and future work.
|
10 |
An Experimentally-Validated Coupled Opto-thermal-electrical Model for PV Performance and ReliabilityYubo Sun (8803139) 07 May 2020 (has links)
Photovoltaics (PV) are a renewable energy technology experiencing rapidly increasing commercial adoption today. Nonetheless, many proposed PV applications
still require higher efficiencies, lower costs and comparable reliability to currently
available in commercial devices (typically made from silicon). To enable the rigorous study of a much wider range of materials and novel design concepts, particularly
those based on compound thin films, Concentrated Photovoltaics (CPV), cells with
bifaciality, a comprehensive modeling framework is developed to couple photon absorption, carrier transport, photon recycling, and thermal transport in PV devices.
The universality of this framework manifest itself in approaching various PV related
problems as follows: 1) exploring the novel design of wide-Eg GaInP solar cells as
an intermediate step to enhance the efficiency of multijunction PV devices; 2) characterizing the open-circuit voltage (VOC) degradation in thin-film vapor liquid solid
(TF-VLS) grown InP solar cell through combined device and circuit model for interpreting photoluminescence (PL) image; 3) establishing optic-electric-thermal coupled
framework to assess and compare the passive cooling effect for Silicon CPV devices
that employ porous soda-lime glass radiative cooler and conventional copper cooler
respectively; 4) Investigating and formulating the analytic solution of the optimal
design that minimizes combined optical shadowing loss and electrical resistive loss
for two types of bifacial PV devices: a) interdigitated back contact (IBC) Silicon
heterojunction (SHJ) solar cells and b) Copper Indium Gallium DiSelenide (CIGSe)
solar cell with Al2O3 passivation; and 5) Constructing an Neural Network Autoen- coder (NNA) that compresses and reconstructs the J-V characteristics obtained from
TCAD simulation and literature for rapid screening and automated classification.
|
Page generated in 0.1062 seconds