• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 35
  • 35
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical investigations of cavitation

Jin, Yong-Hua January 1995 (has links)
This doctoral thesis describes the investigation carried out by the author in pursuit of a better understanding of the mechanism of cavitation. To create cavitation bubbles under laboratory conditions, an intense Q-switched Nd:YAG laser was used and the event was captured using a high-speed photography system. Three different aspects concerning the cavitation phenomenon were studied and they were the propagation of acoustic waves in a liquid, the resultant stress waves in a nearby solid medium and the interactions between a bubble and the nearby boundary. Optical measurement techniques, based on Mach-Zehnder interferometry, shadowgraphy, Schlieren photography and photoelasticity, were employed to assist the observation and analysis of a cavitation event.
2

Dynamics and free-surface geometry of turbulent liquid sheets

Durbin, Samuel Glen, II 17 March 2005 (has links)
Turbulent liquid sheets have been proposed to protect solid structures in fusion power plants by attenuating damaging radiation. For the High-Yield Lithium-Injection Fusion Energy (HYLIFE-II) inertial fusion energy (IFE) power plant concept, arrays of molten-salt sheets form a sacrificial barrier between the fusion event and the chamber first wall while permitting target injection and ignition. Thick liquid protection can help make fusion energy commercially attractive by reducing chamber size and prolonging chamber lifetime. Establishing an experimental design database for this basic building block flow will provide valuable information about various thick liquid protection schemes and allow reactor designers to establish acceptable tolerances between chamber components. Turbulent water sheets issuing downwards into ambient air were studied experimentally at Reynolds numbers of 53,000 ??0,000 and Weber numbers of 2,900 ??,000 based on average velocity and the short dimension of the nozzle exit ( and delta). Initial conditions were quantified by the streamwise (x) and transverse (z) velocity components using laser-Doppler velocimetry just upstream of the nozzle exit. Characterization of the mean free-surface position and free-surface fluctuations, or surface ripple, and estimation of the amount of mass ejected as droplets from the free surface were quantified in the near-field (within 25 and delta of the nozzle exit). Surface ripple and mean sheet geometry were determined directly from planar laser-induced fluorescence visualizations of the free surface. The droplets due to the turbulent breakup of the jet, termed here the hydrodynamic source term, were measured using a simple collection technique to within 1 and delta of the nominal free surface of the jet. The influence of various passive flow control techniques such as removing low-momentum fluid at the free surface (boundary-layer cutting) on sheet geometry, surface ripple, and turbulent breakup were also quantified. The data obtained in this research will allow designers of inertial fusion energy systems to identify the parameter ranges necessary for successful implementation of the thick liquid wall protection system.
3

Optical fibre sensors for the optimization of plasma processing

Khandaker, Iman Ibrahim January 1993 (has links)
No description available.
4

Droplet generation and mixing in confined gaseous microflows

Carroll, Brian Christopher 19 February 2013 (has links)
Fast mixing remains a major challenge in droplet-based microfluidics. The low Reynolds number operating regime typical of most microfluidic devices signify laminar and orderly flows that are devoid of any inertial characteristics. To increase mixing rates in droplet-based devices, a novel technique is presented that uses a high Reynolds number gaseous phase for droplet generation and transport and promotes mixing through binary droplet collisions at velocities near 1m/s. Control of multiple gas and liquid streams is provided by a newly constructed microfluidic test bed that affords the stringent flow stability required for generating liquid droplets in gaseous flows. The result is droplet production with size dispersion and generation frequencies not previously achievable. Limitations of existing mixing diagnostic methods have led to the development of a new measurement technique for measuring droplet collision mixing in confined microchannels. The technique employs single fluorophore laser-induced fluorescence, custom image processing, and meaningful statistical analysis for monitoring and quantifying mixing in high-speed droplet collisions. Mixing information is revealed through three governing statistics that that separate the roles of convective rearrangement and molecular diffusion during the mixing process. The end result is a viewing window into the rich dynamics of droplet collisions with spatial and temporal resolutions of 1μm and 25μs, respectively. Experimental results obtained across a decade vi of Reynolds and Peclet numbers reveal a direct link between droplet mixing time and the collision convective timescale. Increasing the collision velocity or reducing the collision length scale is the most direct method for increasing droplet mixing rates. These characteristics are complemented by detaching droplets under inertial conditions, where increasing the Reynolds number of the continuous gaseous phase generates and transports smaller droplets at faster rates. This work provides valuable insight into the emerging field of two-phase gas-liquid microfluidics and opens the door to fundamental research possibilities not offered by traditional oil-based architectures. / text
5

Three Dimensional Laser Diagnostics for Turbulent Flows and Flames

Xu, Wenjiang 01 November 2017 (has links)
Due to their scientific significance and practical applications, turbulent flows and flames have been under extensive and intensive research for a long time. Turbulent flows and flames of interests to practice inherently have three-dimensional (3D) spatial structures, and therefore diagnostic techniques that can instantaneously resolve their 3D spatial features have long been desired and probably are needed to ultimately answer some of the open research questions. The goal of this dissertation thus is to investigate such diagnostics and demonstrate their capability and limitations in a range of turbulent flows/flames. To accomplish this goal, this dissertation developed and evaluated the following three diagnostic methods: tomographic chemiluminescence (TC), volumetric laser induced fluorescence (VLIF), and super-resolution planar laser induced fluorescence (SR-PLIF). First, 3D flame topography of well-controlled laboratory flames was measured with TC method and validated by a simultaneous 2D Mie scattering measurement. The results showed that the flame topography obtained from TC and the Mie scattering agreed qualitatively, but quantitative difference on the order of millimeter was observed between these two methods. Such difference was caused by the limitations of the TC method. The first limitation involves TC's reliance on chemiluminescence of nascent radicals (mainly CH*) in reacting flows, causing ambiguity in the definition of flame front and limiting its applications to certain types of reactive flow only. The second limitation involves TC's inability to study an isolated region of interest because the chemiluminescence is emitted everywhere in the flame. Based on the above understanding of the TC technique, the second part of this dissertation studied a VLIF method to overcome the above limitations of the TC technique. Compared with the TC technique, the VLIF method can be used in either reacting or non-reacting flow and on any particular region of interest. In the VLIF technique, the fluorescence signal was generated by exciting a target species with a laser slab of certain thickness. The signal was recorded by cameras from different perspectives, and then a VLIF tomographic algorithm was applied to resolve the spatial distribution of the concentration of the target species. An innovative 3D VLIF algorithm was proposed and validated by well-designed experiment. This model enables analysis of VLIF performance in terms of signal level, size of the field of view in 3D, and accuracy. However, due to the limited number of views and the tomographic reconstruction itself, the spatial resolution of VLIF methods is limited. Hence, the third part of this dissertation investigated a SR-PLIF method to provide a strategy to improve the spatial resolution in two spatial directions, and also to extend the measurement range of scanning 3D imaging strategies. The SR-PLIF method used planar images captured simultaneously from two (or more) orientations to reconstruct a final image with resolution enhanced or blurring removed. Both the development of SR algorithm, and the experimental demonstration of the SR-PLIF method were reported. / Ph. D. / Optical diagnostics have become indispensable tools for the study of the turbulent flows and flames. Due to the inherently 3D structure of turbulent flows and flames, diagnostic techniques which can provide 3D measurements have been long desired. Therefore, this dissertation reports the development of three optics diagnostic methods that can provide such measurement capability, with a detailed discussion of their capabilities and limitations. The methods studied are tomographic chemiluminescence (TC), volumetric laser-induced fluorescence (VLIF), and super-resolution planar laser induced fluorescence (SR-PLIF). For the TC technique, the emission of light from combustion radicals (CH* and OH*) was recorded by multiple cameras placed at different orientations. A numerical algorithm was then applied to reconstruct the 3D flame structure. For the VLIF technique, a laser slab was used to excite a specific chemical species in the flame, which were captured from different perspectives to reconstruct the flow or flame structure in 3D. For the SR-PLIF technique, a series of planar images were recorded from multiple orientations to reconstruct a target image with higher resolution or to extend the measurement volume of scanning 3D diagnostics. It is expected that the results obtained in this dissertation lay the groundwork for further development and expanded application of 3D diagnostics for the study of turbulent flows and combustion processes.
6

4D combustion and flow diagnostics based on tomographic chemiluminescence (TC) and volumetric laser-induced fluorescence (VLIF)

Wu, Yue 02 December 2016 (has links)
Optical diagnostics have become indispensable tools for the study of turbulent flows and flames. However, optical diagnostics developed in the past have been primarily limited to measurements at a point, along a line, or across a two-dimensional (2D) plane; while turbulent flows and flames are inherently four-dimensional (three-dimensional in space and transient in time). As a result, diagnostic techniques which can provide 4D measurement have been long desired. The purpose of this dissertation is to investigate two of such 4D diagnostics both for the fundamental study of turbulent flow and combustion processes and also for the applied research of practical devices. These two diagnostics are respectively code named tomographic chemiluminescence (TC) and volumetric laser induced fluorescence (VLIF). For the TC technique, the emission of light as the result of combustion (i.e. chemiluminescence) is firstly recorded by multiple cameras placed at different orientations. A numerical algorithm is then applied on the data recorded to reconstruct the 4D flame structure. For the VLIF technique, a laser is used to excite a specific species in the flow or flame. The excited species then de-excite to emit light at a wavelength longer than the laser wavelength. The emitted light is then captured by optical sensors and again, the numerical algorithm is applied to reconstruct the flow or flame structure. This dissertation describes the numerical and experimental validation of these two techniques, and explores their capabilities and limitations. It is expected that the results obtained in this dissertation lay the groundwork for further development and expanded application of 4D diagnostics for the study of turbulent flows and combustion processes. / Ph. D. / Optical diagnostics have become indispensable tools for the study of turbulent flows and flames. However, optical diagnostics developed in the past have been primarily limited to measurements at a point, along a line, or across a two-dimensional (2D) plane; while turbulent flows and flames are inherently four-dimensional (three-dimensional in space and transient in time). As a result, diagnostic techniques which can provide 4D measurement have been long desired. The purpose of this dissertation is to investigate two of such 4D diagnostics both for the fundamental study of turbulent flow and combustion processes and also for the applied research of practical devices. These two diagnostics are respectively code named tomographic chemiluminescence (TC) and volumetric laser induced fluorescence (VLIF). For the TC technique, the emission of light as the result of combustion (i.e. chemiluminescence) is firstly recorded by multiple cameras placed at different orientations. A numerical algorithm is then applied on the data recorded to reconstruct the 4D flame structure. For the VLIF technique, a laser is used to excite a specific species in the flow or flame. The excited species then de-excite to emit light at a wavelength longer than the laser wavelength. The emitted light is then captured by optical sensors and again, the numerical algorithm is applied to reconstruct the flow or flame structure. This dissertation describes the numerical and experimental validation of these two techniques, and explores their capabilities and limitations. It is expected that the results obtained in this dissertation lay the groundwork for further development and expanded application of 4D diagnostics for the study of turbulent flows and combustion processes.
7

Pressure and thermal effects on superhydrophobic friction reduction in a microchannel flow

Kim, Tae Jin, active 21st century. 22 September 2014 (has links)
As the fluidic devices are miniaturized to improve portability, the friction of the microchannel becomes intrinsically high and a high pumping power will be required to drive the fluid. Since the pumping power delivered by portable devices is limited, one method to reduce this is to render the surface to become slippery. This can be achieved by roughening up the microchannel wall and form a bed of air pockets between the roughness elements, which is known as the superhydrophobic Cassie-Baxter state. While the study on superhydrophobic microchannels are focused mainly in maximizing the friction reduction effects and maintaining the stability of the air pockets, less attention has been given to characterizing the microchannel friction under a metastable state, where partial flooding of the micro-textures may be present, and under heated conditions, where the air pockets are trapped between the micro-textures. In order to quantify the frictional characteristics, microchannels with micron-sized trenches on the side walls were fabricated and tested under varying inlet pressures and heating conditions. By measuring the hydrodynamic resistance and comparing with numerical simulations, results suggest that (1) the air-water interface behaves close to a no-slip boundary condition, (2) friction becomes insensitive to the wetting degree once the micro-trenches become highly wetting, (3) the fully wetted micro-trench may be beneficial over the de-wetted ones in order to achieve friction reduction effects and (4) heating the micro-trenches to induce a highly de-wetting state may actually be detrimental to the microchannel flow due the excessive growth of the air layer. As part of the future work to characterize heat transfer in superhydrophobic microchannels, a rectangular microchannel with microheaters embedded close to the side walls was fabricated and the corresponding heat transfer rates were measured through dual fluorescence thermometry. Results suggested that significant heat is lost through the environment despite the high thermal resistance of the microchannel material. An extra insulation is suggested prior to characterizing the convective heat transfer coefficients in the superhydrophobic microchannel flow. / text
8

Multi-Modal Imaging Techniques for Early Cancer Diagnostics

Bedard, Noah 06 September 2012 (has links)
Cancer kills more Americans under the age of 75 than any other disease. Although most cancers occur in epithelial surfaces that can be directly visualized, the majority of cases are detected at an advanced stage. Optical imaging and spectroscopy may provide a solution to the need for non-invasive and effective early detection tools. These technologies are capable of examining tissue over a wide range of spatial scales, with widefield macroscopic imaging typically spanning several square-centimeters, and high resolution in vivo microscopy techniques enabling cellular and subcellular features to be visualized. This work presents novel technologies in two important areas of optical imaging: high resolution imaging and widefield imaging. For subcellular imaging applications, new high resolution endomicroscope techniques are presented with improved lateral resolution, larger field-of-view, increased contrast, decreased background signal, and reduced cost compared to existing devices. A new widefield optical technology called multi-modal spectral imaging is also developed. This technique provides real-time in vivo spectral data over a large field-of-view, which is useful for detecting biochemical alterations associated with neoplasia. The described devices are compared to existing technologies, tested using ex vivo tissue specimens, and evaluated for diagnostic potential in a multi-patient oral cancer clinical trial.
9

Far-field radiated noise mechanisms in high reynolds number and high-speed jets

Kastner, Jeffrey F. 16 July 2007 (has links)
No description available.
10

A Diagnostic Technique for Particle Characterization Using Laser Light Extinction

Barboza, Kris Leo 04 May 2015 (has links)
Increased operations of aircraft, both commercial and military, in hostile desert environments have increased risks of micro-sized particle ingestion into engines. The probability of increased sand and dust ingestion results in increased life cycle costs, in addition to increased potential for performance loss. Thus, abilities to accurately characterize inlet sand would be useful for engine diagnostics and prognostic evaluation. Previous characterization studies were based on particle measurements performed a posteriori. Thus, there exists a need for in situ quantification of ingested particles. The work presented in this thesis describes initial developments of a line-of-sight optical technique to characterize ingested particles at concentrations similar to those experienced by aircraft in brownout conditions using light extinction with the end goal of producing an onboard aircraft diagnostic sensor. By measuring the extinct light intensity in presence of particles over range of concentrations, a relationship between diameters, concentration and light extinction was used for characterization. The particle size distribution was assumed log-normal and size range of interest 1-10 μm. To validate the technique, particle characterization in both static and flow based tests were performed on polystyrene latex spheres of sizes 1.32 μm, 3.9 μm, 5.1 μm, and 7 μm in mono-disperse and poly-disperse mixtures. Results from the static experiments were obtained with a maximum relative error of 11%. Concentrations from the static experiments were obtained with a maximum relative error of 18%. Mono-dispersed and poly-dispersed particle samples were sized in a flow setup, with a maximum relative error of 12% and 10% respectively across all diameter samples tested. Uncertainty in measurements were quantified, with results indicating a maximum error of 17% in diameters due to sources of variability and showed that shorter wavelength lasers provide lower errors in concentration measurements, compared to longer wavelengths. For real time, on-board measurements, where path lengths traveled by light are much larger than distances traveled in initial proof of concept experimental setups, requirements would be to install sensitive detectors and powerful lasers to prevent operation near noise floors of detectors. Vibration effects from the engine can be mitigated by using larger area collection optics to ensure that the transmitted light falls on active detector areas. Results shown in this thesis point towards validity of the light extinction technique to provide real time characterization of ingested particles, and will serve as an impetus to carry out further research using this technique to characterize particles entering aircraft engine inlets. / Master of Science

Page generated in 0.1082 seconds