• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 7
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 92
  • 92
  • 19
  • 17
  • 16
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Performance evaluation of the inter-connected optical ring network (ICORNet)

Sida, Wichan January 2000 (has links)
No description available.
32

Analysis and development of all fibre wavelength selective fibre optic components

Madden, W. Iain January 2000 (has links)
No description available.
33

Time division multiple access/code division multiple access for the optical local access network

Brown, Trevor Junior January 1998 (has links)
No description available.
34

Development of a distributed optical fibre pH sensor system

Yang, Yatao January 1997 (has links)
No description available.
35

Fibre optic sensors based on fluorescence techniques for temperature and strain measurement

Forsyth, David I. January 2002 (has links)
No description available.
36

Puffer circuit breaker diagnostics using novel optical fibre sensors

Isaac, Leslie Thomas January 1997 (has links)
No description available.
37

Radiation effects on silica based waveguides

Spaargaren, Susan Marianne Rosemary January 1997 (has links)
No description available.
38

New techniques in astronomical spectroscopy for 8-m telescopes

Lee, David January 1998 (has links)
The purpose of this thesis is to investigate new instrument technology to enhance the capabilities of 8-m telescopes. This thesis first describes the theory, design, construction, and testing of an immersed grating. Immersed gratings can be used to provide R≥ 10(^4) with a multi-object and/or integral field spectrograph on an 8-m telescope. Immersed gratings allow high resolution to be achieved whilst maintaining the required pupil size at a level similar to that on 4-m telescopes. This thesis describes laboratory tests which verify that immersed gratings provide high resolution. The throughput penalty in using an immersed grating is shown to be small with losses due to air-glass reflections, which can be eliminated with antireflection coatings, and metal-dielectric losses. This work demonstrates that immersed gratings provide a good method to reach R=10(^4) (and above) with a multi-aperture spectrograph on an 8-m telescope. The second part of this thesis describes the construction of a microlens-fibre based integral field unit (IFU): the SMIRFS-IFU. This instrument provides a unique J and H-band integral field capability for use with the CGS4 spectrograph at UKIRT. The optical design, assembly, laboratory testing, and telescope commissioning of the SMIRFS-IFU are described. The microlens arrays for use with SMIRFS-IFU were tested in detail and found to provide excellent image quality but with some scattered light. The assembly of the SMIRFS-IFU was achieved with high precision. The overall performance of the SMIRFS-IFU was found to be high and close to theoretical expectations. This instrument demonstrates that the technology of microlenses linked to fibres does provide a means of constructing high performance (i.e. high throughput, high spatial and spectral resolution) IFUs. Integral field spectroscopy is even more important for 8-m telescopes to take advantage of their enormous fight gathering power. The SMIRFS-IFU is an important upgrade to CGS4 to perform high spatial resolution integral field spectroscopy.
39

Digital pulse interval modulation for optical communication systems

Kaluarachchi, Eraj Dulip January 1997 (has links)
Pulse time modulation (PTM) techniques have drawn considerable attention over the years as suitable schemes for transmission of information over optical fibres. PTM schemes are known to utilise the vast optical bandwidth to provide efficient transmission characteristics. Pulse code modulation is one such modulation scheme that has been used widely in various communication systems. In this thesis digital pulse interval modulation (DPIM), a form of PTM, is proposed as a suitable modulation scheme for optical communication systems. In this scheme the information is represented by means of varying the anisochronous frame interval between two successive pulses. Each pulse fulfils the dual role of representing the frame boundaries and initiation of the next sampling event within the modulator or sample reconstruction in the demodulator. In this study DPIM frame structure is proposed and sampling criteria, information capacity, bandwidth requirements are discussed in depth. The spectral behaviour of the scheme is investigated and a mathematical model is developed to represent the spectra. The model was numerically evaluated and verified with the practical measurements to prove its validity. Spectral predictions were made for random as well as periodic information signals showing the existence of the distinct slot frequency component, which is used for slot synchronisation. Frame synchronisation is not required as DPIM has self synchronised frame structure. For random signals, slot component is found to be about 15 dB and for periodic single tone sinusoidal signal this was at about 5 dB. Dependency of this component on the various system parameters such as bit resolution, pulse width, pulse shape are discussed. A detailed account of the receiver performance is given. Receiver analysis was carried out for narrow band as well as for wide band channels. Possible error sources are presented and the system performance degradation with these error sources is discussed and a comparison is made with isochronous DPPM and PCM. For performance evaluation of analogue systems, signal-to-noise ratio was mathematically modelled and compared with PCM. This analysis showed that DPIM SNRs shows three important regions as compared to PCM. That is when the SNR is inferior, superior and identical to PCM performance. Threshold levels corresponding to the above regions vary depending on the system bit resolution. A prototype DPIM system was designed and implemented to transmit low speed analogue signal (≈15 kHz) at bit resolutions of 4, 5 and 6 where the slot frequencies are at 510, 990 and 1950 kHz, respectively. Measurements were carried out in order to verify the predicted performance. This results showed close agreement with the predicted. Receiver sensitivity of the prototype at bit error rate of 10<sup>-9</sup> was found to be about -45.5 dBm at all three cases with transmitted average power of -28.8 dBm allowing high optical power budget. The signal-to-noise ratio threshold level of the system was at -47 dBm. Finally, linearity measurements of the overall system were made at the above bit resolutions and the quantitative and qualitative results are presented.
40

Wavelet theory of optical pulse propagation

Pierce, Iestyn January 1998 (has links)
No description available.

Page generated in 0.0739 seconds