• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microscopic applications of holographic beam shaping and studies of optically trapped aerosols

Burnham, Daniel R. January 2009 (has links)
This thesis has two themes. Firstly, it concerns the original application of holographic beam shaping, employed through the methods associated with optical manipulation, to three microscopic fields of research. Secondly, it studies the optical trapping of aerosol droplets through experimentation and computational modelling. The aims are to not only provide an account of the work carried out but also a base for future researchers and students. Chapter 1 provides an introduction to the field of optical manipulation and the relevance of my studies. Chapter 2 outlines the construction of an optical tweezers which is the basis of advanced experimental work described in later chapters. It also overviews how optical tweezers operate and are quantified. In chapter 3 I describe how beam shaping is implemented for my investigations with a spatial light modulator and phase-only holograms. I detail the algorithms and software written before discussing their performance and finally the optimisation of the apparatus. Chapter 4 describes three original applications of beam shaping, including the trapping and coagulation of multiple aerosols, the manipulation of filamentous fungi hyphal tips and novel digital microfluidic operations using thermocapillary forces. I also lay down preliminary results for observing orbital angular acceleration using beams carrying orbital angular momentum. To study single optically trapped aerosols I use two methods. Firstly, their Brownian motion is investigated through sub diffraction limit position detection. Unique results in optical tweezers are shown with liquid droplets behaving as under-damped Brownian oscillators. Through these studies I demonstrate a new technique for sizing trapped aerosols, with significant advantages over current methods. I also show that the droplets can be be parametrically excited which can result in trap failure. Secondly, in chapter 6, I use a theoretical model to describe the forces imparted to a trapped droplet. I extend current theories to include the effects of a three medium focal region to accurately describe airborne optical traps. The work qualitatively explains the phenomena observed experimentally. The work contained here leaves much scope for future investigations, for which I provide an overview in chapter 7.
2

Integrated Microfluidic Optical Manipulation Technique: Towards High Throughput Single Cell Analysis

Charron, Luc 20 August 2012 (has links)
An all-optical micromanipulation technique is presented in the framework of precise cell selection within a cell culture and multiplexed transport capabilities for microfluidic single cell analysis applications. The technique was developed by combining an optical tweezer setup with a novel integrated waveguide cell propulsion method referred to as end-face waveguide propulsion (EFWP). The EFWP technique delivers optical forces to a particle generating thrust. The thesis is divided into two sections: simulation and experimental validation. In the first section a new simulation technique based on ray optics theory (ROT) and the beam propagation method (BPM) is used to predict particle velocity and trajectory along a microfluidic propagation channel. In this work, the ROT-BPM technique is used to analyse and optimize the waveguide geometry to maximize particle velocity. Analysis of the impact of common microchip manufacturing limitations on velocity is performed to determine acceptable fabrication process tolerances. The second section presents experimental results of polymer microspheres and acute myeloid leukemia (AML) cells as biological targets. The experimental results are compared with simulations performed in the first section. Correction factors are added to the simulations to reflect the experimental device parameters. Thermal e_ects due to photon absorption within the fluidic channels are also investigated and corrected for. The final analysis indicates that the ROT-BPM technique developed in this work can be used to adequately predict particle velocity and trajectory path. EFWP currently delivers the fastest particle velocities compared to other optical micromanipulation techniques currently available in microfluidic applications. While the technique is focused on addressing chemical cytometry precise particle selectivity and high throughput needs, EFWP can also be used in many other single cell applications.
3

Integrated Microfluidic Optical Manipulation Technique: Towards High Throughput Single Cell Analysis

Charron, Luc 20 August 2012 (has links)
An all-optical micromanipulation technique is presented in the framework of precise cell selection within a cell culture and multiplexed transport capabilities for microfluidic single cell analysis applications. The technique was developed by combining an optical tweezer setup with a novel integrated waveguide cell propulsion method referred to as end-face waveguide propulsion (EFWP). The EFWP technique delivers optical forces to a particle generating thrust. The thesis is divided into two sections: simulation and experimental validation. In the first section a new simulation technique based on ray optics theory (ROT) and the beam propagation method (BPM) is used to predict particle velocity and trajectory along a microfluidic propagation channel. In this work, the ROT-BPM technique is used to analyse and optimize the waveguide geometry to maximize particle velocity. Analysis of the impact of common microchip manufacturing limitations on velocity is performed to determine acceptable fabrication process tolerances. The second section presents experimental results of polymer microspheres and acute myeloid leukemia (AML) cells as biological targets. The experimental results are compared with simulations performed in the first section. Correction factors are added to the simulations to reflect the experimental device parameters. Thermal e_ects due to photon absorption within the fluidic channels are also investigated and corrected for. The final analysis indicates that the ROT-BPM technique developed in this work can be used to adequately predict particle velocity and trajectory path. EFWP currently delivers the fastest particle velocities compared to other optical micromanipulation techniques currently available in microfluidic applications. While the technique is focused on addressing chemical cytometry precise particle selectivity and high throughput needs, EFWP can also be used in many other single cell applications.
4

Neuron guidance and nano-neurosurgery using optical tools

Vathalloor Mathew, Manoj 16 October 2009 (has links)
No description available.
5

Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions

Clark, David C. 01 January 2012 (has links)
In this dissertation we use digital holographic quantitative phase microscopy to observe and measure phase-only structures due to induced photothermal interactions and nanoscopic structures produced by photomechanical interactions. Our use of the angular spectrum method combined with off-axis digital holography allows for the successful hologram acquisition and processing necessary to view these phenomena with nanometric and, in many cases, subnanometric precision. We show through applications that this has significance in metrology of bulk fluid and interfacial properties. Our accurate quantitative phase mapping of the optically induced thermal lens in media leads to improved measurement of the absorption coefficient over existing methods. By combining a mathematical model describing the thermal lens with that describing the surface deformation effect of optical radiation pressure, we simulate the ability to temporally decouple the two phenomena. We then demonstrate this ability experimentally as well as the ability of digital holography to clearly distinguish the phase signatures of the two effects. Finally, we devise a pulsed excitation method to completely isolate the optical pressure effect from the thermal lensing effect. We then develop a noncontact purely optical approach to measuring the localized surface properties of an interface within a system using a single optical pressure pulse and a time-resolved digital holographic quantitative phase imaging technique to track a propagating nanometric capillary disturbance. We demonstrate the method's ability to accurately measure the surface energy of pure media and chemical monolayers formed by surfactants with good agreement to published values. We discuss the possible adaptation of this technique to applications for living biological cell membranes.
6

Coherent optical manipulation of electron spins in semiconductor nanostructures

Oleary, Shannon, 1977- 09 1900 (has links)
xiv, 114 p. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Electron spin coherence can arise through a coherent superposition of two spin states in the conduction band of a semiconductor and can persist over remarkably long time and length scales. The robust nature of electron spin coherence makes it an excellent model system for exploring coherent quantum phenomena in semiconductors. This dissertation presents both spectral- and time-domain nonlinear optical studies of electron spin coherence through Λ-type three-level systems in two- and zero-dimensional semiconductor systems. The spectral domain study focuses on the experimental realization of electromagnetically induced transparency (EIT), a phenomenon that exploits destructive interference induced by the spin coherence. Coherent Zeeman Resonance (CZR), a precursor to EIT, is demonstrated in two 2D systems, a GaAs mixed-type quantum well (MTQW) and a modulation doped CdTe quantum well (QW). For these studies, Λ-type three-level systems are formed via dipole coupling of a trion to two electron spin states. The CZR response can be described qualitatively by effective density matrix equations. In addition, effects of manybody Coulomb interactions on CZR are investigated by varying the electron density in the MTQW via optical carrier injection. Time-domain studies based on transient differential transmission (DT) are carried out to explore the excitation, manipulation, and detection of electron spin coherence and to better understand how manybody interactions affect coherent nonlinear optical processes in semiconductors. While electron spin coherence can be formed and detected via resonant excitation of excitons or trions, a surprising observation is that injecting excitons into the 2D electron gas in a modulation doped CdTe QW can significantly alter the oscillatory nonlinear response of the electron spin coherence, while the response remains qualitatively unchanged when trions are injected. These behaviors are attributed to an interplay between manybody effects and carrier heating generated by trion formation from excitons. Finally, donor-bound electrons in GaAs are used as a model of localized electron spins. Spin decoherence of order 10 ns, limited by nuclear hyperfine interactions, is observed. Electron spin rotation induced by a nearly resonant laser pulse is also observed, opening the door for further work on mitigating electron spin decoherence time through optical spin echoes. / Adviser: Hailin Wang
7

Studies of novel beam shapes and applications to optical manipulation

Morris, Jill E. January 2010 (has links)
In this thesis an investigation into novel beams and optical manipulation is presented. Sculpting the phase profile of a Gaussian beam can result in the generation of a beam with unusual properties. Described in this thesis are optical vortices, Bessel beams and Airy beams. Additionally, optical manipulation was investigated using both novel beams and Gaussian beams with an emphasis on the use of a broad bandwidth laser source. The generation of multiple broadband optical trap sites was explored, and the transfer of orbital angular momentum from a broadband optical vortex to trapped microspheres was demonstrated. An introduction to the thesis and an overview of laser sources used for optical manipulation is presented in Chapters 1 and 2. Chapters 3 and 4 detail the background of optical manipulation and novel beam shaping. In Chapter 5, an investigation into the generation of multiple broadband optical trap sites is presented. Chapter 6 details the use of a ‘white light’ optical vortex to transfer orbital angular momentum to trapped microspheres. Chapter 7 presents the results of an investigation carried out using a supercontinuum source to characterise the wavelength and spatial coherence dependence of the properties of an optical Airy beam. The use of a monochromatic laser to generate Bessel beams that propagate along curved trajectories is detailed in Chapter 8. Chapter 9 summarises the thesis and suggests future work.
8

Advanced light-sheet and structured illumination microscopy techniques for neuroscience and disease diagnosis

Nylk, Jonathan January 2016 (has links)
Optical microscopy is a cornerstone of biomedical research. Advances in optical techniques enable specific, high resolution, sterile, and biologically compatible imaging. In particular, beam shaping has been used to tailor microscopy techniques to enhance microscope performance. The aim of this Thesis is to investigate the use of novel beam shaping techniques in emerging optical microscopy methods, and to apply these methods in biomedicine. To overcome the challenges associated with high resolution imaging of large specimens, the use of Airy beams and related techniques are applied to light-sheet microscopy. This approach increases the field-of-view that can be imaged at high resolution by over an order of magnitude compared to standard Gaussian beam based light-sheet microscopy, has reduced phototoxicity, and can be implemented with a low-cost optical system. Advanced implementations show promise for imaging at depth within turbid tissue, in particular for neuroscience. Super-resolution microscopy techniques enhance the spatial resolution of optical methods. Structured illumination microscopy is investigated as an alternative for electron microscopy in disease diagnosis, capable of visualising pathologically relevant features of kidney disease. Separately, compact optical manipulation methods are developed with the aim of adding functionality to super-resolution techniques.
9

Innovations for improved chemical imaging and optical manipulation in biological systems

Matthew G Clark (18144661) 13 March 2024 (has links)
<p dir="ltr">This thesis describes advancements in both chemical imaging and optical manipulation methodologies for their application in tandem monitoring and control of biochemical processes. We developed a fast acquisition multimodal nonlinear imaging platform based on pulse-picking to minimize photoperturbation to the sample during imaging. By frequency doubling the imaging source, through acousto-optic modulation and simple comparator circuitry, we developed a comprehensive platform that uses chemical specific signals generated during imaging to control the pixel location for laser activation for reaction control. This feedback loop allows for advanced decision logic on a pixel by pixel basis.</p>
10

Applications of microfluidic chips in optical manipulation & photoporation

Marchington, Robert F. January 2010 (has links)
Integration and miniaturisation in electronics has undoubtedly revolutionised the modern world. In biotechnology, emerging lab-on-a-chip (LOC) methodologies promise all-integrated laboratory processes, to perform complete biochemical or medical synthesis and analysis encapsulated on small microchips. The integration of electrical, optical and physical sensors, and control devices, with fluid handling, is creating a new class of functional chip-based systems. Scaled down onto a chip, reagent and sample consumption is reduced, point-of-care or in-the-field usage is enabled through portability, costs are reduced, automation increases the ease of use, and favourable scaling laws can be exploited, such as improved fluid control. The capacity to manipulate single cells on-chip has applications across the life sciences, in biotechnology, pharmacology, medical diagnostics and drug discovery. This thesis explores multiple applications of optical manipulation within microfluidic chips. Used in combination with microfluidic systems, optics adds powerful functionalities to emerging LOC technologies. These include particle management such as immobilising, sorting, concentrating, and transportation of cell-sized objects, along with sensing, spectroscopic interrogation, and cell treatment. The work in this thesis brings several key applications of optical techniques for manipulating and porating cell-sized microscopic particles to within microfluidic chips. The fields of optical trapping, optical tweezers and optical sorting are reviewed in the context of lab-on-a-chip application, and the physics of the laminar fluid flow exhibited at this size scale is detailed. Microfluidic chip fabrication methods are presented, including a robust method for the introduction of optical fibres for laser beam delivery, which is demonstrated in a dual-beam optical trap chip and in optical chromatography using photonic crystal fibre. The use of a total internal reflection microscope objective lens is utilised in a novel demonstration of propelling particles within fluid flow. The size and refractive index dependency is modelled and experimentally characterised, before presenting continuous passive optical sorting of microparticles based on these intrinsic optical properties, in a microfluidic chip. Finally, a microfluidic system is utilised in the delivery of mammalian cells to a focused femtosecond laser beam for continuous, high throughput photoporation. The optical injection efficiency of inserting a fluorescent dye is determined and the cell viability is evaluated. This could form the basis for ultra-high throughput, efficient transfection of cells, with the advantages of single cell treatment and unrivalled viability using this optical technique.

Page generated in 0.0882 seconds