• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laser-induced desorption and damage of water- and heavy water-dosed optical thin films.

Franck, Jerome Bruce. January 1989 (has links)
Previous work has shown that laser-induced desorption (LID) can prove useful for the determination of surface contamination. However, because of the nature of small-spot sampling utilized in the previous work, it proved rather difficult to gather statistically significant data. A solution to this problem that still allowed sampling the surface with small focused laser spots was to automate the sample manipulation, laser control, and data acquisition of the system. With the automation of the LID facility in place, a detailed study of the LID of water/heavy water (H₂O/D₂O) was undertaken. As in the earlier work, samples were irradiated with a hydrogen fluoride/deuterium fluoride (HF/DF) laser beam focused inside an ultrahigh vacuum (UHV) chamber. The molecules desorbed from the sample surface were partially contained in a glass envelope that also contained a quadrupole mass analyzer. Samples consisted of bulk-etched CaF₂ and optical thin-film coatings of CaF₂--undosed or H₂O/D₂O dosed--on a variety of substrates. Some analysis was performed on cleaved, single-crystal alkali halides. The focused laser spot size was 155 μm (l/e² diameter) for the HF laser and 138 μm (l/e² diameter) for the DF laser. Between 400 and 800 sites per sample were tested for each desorption onset analysis. A study was also performed to test the possibility of correlation between (1) laser-induced damage and defects and (2) laser-induced desorption and adsorption sites for some of the samples listed above. Attempts to deuterate and hydrate CaF₂ thin films met with limited success as laser-induced desorption samples. Other analysis techniques showed that dosing during the coating process produced a more ordered coating; in fact, dosing with H₂O reduced the optical absorption in the "H₂O" band, modified the damage morphology, and, along with a low temperature bakeout, raised the laser-damage threshold.
2

Nonlinear Absorption Initiated Laser-Induced Damage in [Gamma]-Irradiated Fused Silica, Fluorozirconate Glass and Cubic Zirconia

Mansour, Nastaran 08 1900 (has links)
The contributions of nonlinear absorption processes to laser-induced damage of three selected groups of transparent dielectrics were investigated. The studied materials were irradiated and non-irradiated fused silica, doped and undoped fluorozirconate glass and cubic zirconia stabilized with yttria. The laser-induced damage thresholds, prebreakdown transmission, and nonlinear absorption processes were studied for several specimens of each group. Experimental measurements were performed at wavelengths of 1064 nm and 532 nm using nanosecond and picosecond Nd:YAG laser pulses. In the irradiated fused silica and fluorozirconate glasses, we found that there is a correlation between the damage thresholds at wavelength λ and the linear absorption of the studied specimens at λ/2. In other words, the laser-induced breakdown is related to the probability of all possible two-photon transitions. The results are found to be in excellent agreement with a proposed two-photon-initiated electron avalanche breakdown model. In this model, the initial "seed" electrons for the formation of an avalanche are produced by two-photon excitations of E' centers and metallic impurity levels which are located within the bandgaps of irradiated Si02 and fluorozirconate glasses, respectively. Once the initial electrons are liberated in the conduction band, a highly absorbing plasma is formed by avalanche impact ionization. The resultant heating causes optical damage. In cubic zirconia, we present direct experimental evidence that significant energy is deposited in the samples at wavelength 532 nm prior to electron avalanche formation. The mechanism is found to be due to formation of color centers (F+ or F° centers) by the two-photon absorption process. The presence of these centers was directly shown by transmission measurements. The two-photon absorption (2PA) process was independently investigated and 2PA coefficients obtained. The accumulated effects of the induced centers on the nonlinear absorption measurements were also considered and the 2PA coefficients were measured using short pulses where this effect is negligible. At room temperature, the color centers slowly diffuse out of the irradiated region. The density of these centers was monitored as a function of time. The initial distribution of the centers was assumed to have a Gaussian profile. For this model the diffusion equation was solved exactly and the diffusion constant obtained.
3

A Technique for Increasing the Optical Strength of Single-Crystal NaCl and KCl Through Temperature Cycling

Franck, Jerome B. (Jerome Bruce) 05 1900 (has links)
This thesis relates a technique for increasing the optical strength of NaCl and KCl single-crystal samples. The 1.06-μm pulsed laser damage thresholds were increased by factors as large as 4.6 for a bulk NaCl single-crystal sample. The bulk laser damage breakdown threshold (LDBT) of the crystal was measured prior to and after heat treatment at 800*C using a Nd:YAG laser operating at 1.06 μm. Bulk and surface LDBTs were also studied on samples annealed at 400° C. These samples showed differences in damage morphology on both cleaved and polished surfaces, and the cleaved surfaces had improved damage thresholds. However, neither the polished surfaces nor the bulk showed improved threshold at the lower annealing temperature.

Page generated in 0.0806 seconds