• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 7
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 203
  • 203
  • 154
  • 148
  • 46
  • 35
  • 28
  • 26
  • 16
  • 16
  • 14
  • 13
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Laser cooling mechanisms and Brownian motors in optical lattices

Sjölund, Peder January 2007 (has links)
Denna avhandling innefattar såväl experimentella som numeriska studier av laserkylda atomer i optiska kristallgitter. Bland annat har laserkylningsprocesser studerats, där atomers rörelser i optiska kristallgitter har uppvisat andra typer av bakomliggande mekanismer än de som tidigare förutsågs genom “Sisyfoskylningsmodellen”. Sedan atomer kylda till några mikrokelvin först realiserades (sent 60-tal) så har Sisyfoskylningsmodellen varit hörnstenen för förståelsen av laserkylda och lokaliserade atomer i dissipativa optiska kristallgitter. I dissipativa optiska kristallgitter finns det en balans mellan den uppvärmande diffusionen och den kylande friktionen. Studier i denna avhandling visar att laserkylningsprocesser är mer komplexa än vad denna modell innefattar. Både experimentella och numeriska resultat visar att atomer i optiska kristallgitter har två hastighetsfördelningar där en “kallare” och en “varmare” mod av atomer omfördelas mellan moderna. Speciellt så visar det sig att varma atomer dels värms och diffunderar ut ur gittret, men samtidigt populeras den kalla moden med en tidsutveckling som inte förändrar dess temperatur nämnvärt. I detta arbete presenteras också resultat från den första realiserade tredimensionella Brownska motorn baserad på ljus-atom-växelverkan. Det unika med denna Brownska motor är att den är kontrollerbar både vad gäller dess hastighet som dess riktning. Den underliggande principen för denna Brownska motor är tämligen generell och den kan därför vara applicerbar inom andra vetenskapliga discipliner såsom nanoteknik, biologi, kemi och elektronik. Generellt så är förståelsen av Brownska motorer viktigt eftersom de återfinns i vår omgivning, från exempelvis härkomsten av muskelsammandragningar och materialtransporter i levande celler till rörelsen hos bakterier och mindre organismer. Det flesta av de experimentella resultaten presenterade i denna avhandling har varit möjliga genom utveckling och förbättringar av den experimentella uppställningen. Framförallt så har kvaliten och reproducerbarheten vid de olika mätningar som gjorts blivit avsevärt förbättrade jämfört med tidigare vilket utgör en bra grund för framtida studier av ultrakalla atomer. / In this thesis, detailed experimental studies and numerical simulations are presented of laser cooling mechanisms in dissipative optical lattices and results of the first realized three dimensional Brownian motor in optical lattices. A dissipative optical lattice is a periodic light shift potential, created in the interference patterns of laser beams. In this, atoms can be both cooled and trapped, and the most important relaxation mechanism is generally considered to be “Sisyphus cooling”. However, careful experimental and theoretical investigations indicate the presence of other cooling processes as well. This is studied by varying different parameters such as irradiance and frequency of the lattice light. The time evolution of atoms in optical lattices show strong evidence of a bimodal velocity distribution, where a population transfer between one mode containing “hot” atoms and one mode containing “cold” atoms is evident. The normal diffusion of atoms in optical lattices is characterized by isotrop random fluctuations and exhibit the nature of Brownian motion. We have realized a technique where this motion is rectified and controlled. This is done in a three dimensional double optical lattice. This Brownian motor has control properties for both its speed and its direction in three dimensions. Our three dimensional double optical lattice is created by using laser light, exploiting two transitions, in the D2 line of cesium. Two three dimensional optical lattices are spatially overlapped; each optical lattice traps atoms in one of two hyperfine ground states. The controllability comes about by inducing phase shifts in the lattice laser beams, which displace the lattices relative to each other. This type of highly controlled Brownian motor is of fundamental interest since Brownian motion is present in almost all systems and for the role they play in protein motors and the function of living cells, and for the potential applications in nanotechnology. Brownian motors of this kind also open the way to possible studies of quantum Brownian motors and quantum resonances that are predicted for atomic ratchets. Optical lattices, and especially double optical lattices, have also been suggested as a platform for quantum state manipulations due to the good isolation from environment and ambient effects. Most of the work in this thesis is a first step towards the implementation of quantum manipulation schemes in a double optical lattice.
22

Dynamic Characterization of Semiconductor Lasers and Intensity Modulators

Chacinski, Marek January 2009 (has links)
The research work presented in this thesis deals with characterization ofdynamics of active photonic devices that are based on semiconductormaterials. The thesis contains an introduction and a collection of publishedarticles in peer reviewed international journals and conferences.The introduction starts with the physical background and a review of thesemiconductor material properties which both affects the design andfabrication of the devices and determine their performance in applicationssuch as wavelength, optical power and attenuation, drive current andvoltage, temperature sensitivity and modulation bandwidth.The next chapter of the introduction is dedicated to various kinds ofsemiconductor lasers. It describes the physical principles, steady stateoperation and the dynamical response. The laser is essentially an opticalcavity consisting of a material with optical gain inbetween two reflectivemirrors. Special attention is given to the spectral shape of the mirrorreflectivity and its effect on the laser dynamics and how these effects canbe distinguished from those of the gain material.In order to improve dynamic performance, it is common that the laser,instead of being directly modulated by varying the drive current, isconnected to a separate modulator. The next chapter is therefore devotedto electroabsorption modulators for high speed intensity modulation andtheir integration to lasers. In order to fully take advantage of the highintrinsic modulation bandwidth of these devices it is important to havea good microwave design to avoid electrical parasitics. A segmented paddesign to achieve this is briefly described.The last part of the introduction covers measurements techniques that wereimplemented to experimentally investigate above devices. A description ofthe measurement methods, including practical hints and methods forevaluation of the measured results are provided. / QC 20100707
23

Polymeric Microcavities for Dye Lasers and Wavefront Shapers

Ricciardi, Sébastien January 2008 (has links)
<p>Over the last few years, the available computing power allows us to have a deeper insight into photonics components than we ever had before. In this thesis we use the finite element method (FEM) to explore the behavior of the waves in 2D planar microcavities. We demonstrate the tunability of the cavity over a wide range of frequencies taking into account both the thermo-mechanical and the thermo-optical effect. Geometry and material choices are done so that the latter is predominant. We also demonstrate an odd mode disappearing phenomenon reported here for the first time as far as we know. Using this knowledge, we design two structures with these remarkable properties.</p><p>One of the devices will be used as micro-sized solid-state dye laser with Rhodamine 6G as the active medium and SU-8 polymer as a cavity material in sizes that have never been reached before. This opens new opportunities not only for future implementation for “labs-on-a-chip” (LOC) but also for a higher integration density of optical communication systems. The second device is a wavefront shaper creating plane waves from a point source performing the functions of beam shaper and beam splitter with plane wave as the output result.</p><p>After an introduction to FEM and comparison with a rival algorithm, some issues related to FEM in electromagnetic simulation are resolved and explained. Finally, some fabrication techniques with feature sizes <100 nm, such as electron beam lithography (EBL) and nano-imprint lithography (NIL), are described and compared with other lithographic techniques.</p>
24

Structural and electronics properties of noncovalently functionalized graphene

Hewa-Bosthanthirige, Mihiri Shashikala 01 July 2013 (has links)
Recent experimental work has demonstrated production of quasi free-standing graphene by methane intercalation. The intercalation weakens the coupling of adjacent graphene layers and yields Dirac fermion behaviour of monolayer graphene. We have investigated the electronic characteristics of methane intercepted graphene bilayer under a perpendicularly applied electric field. Evolution of the band structure of intercalated graphene as a function of the bias is studied by means of density-functional theory including interlayer van der Waals interactions. The implications of controllable band gap opening in methane-intercalated graphene for future device applications are discussed. Noncovalent functionalization provides an effective way to modulate the electronic properties of graphene. Recent experimental work has demonstrated that hybrids of dipolar phototransductive molecules tethered to graphene are reversibly tunable in doping. We have studied the electronic structure characteristics of chromophore/graphene hybrids using dispersion-corrected density functional theory. The Dirac point of noncovalently functionalized graphene shifts upward via cis-trans isomerism, which is attributed to a change in the chromophore's dipole moment. Our calculation results reveal that the experimentally observed reversible doping of graphene is attributed to the change in charge transfer between the light-switchable chromophore and graphene via isomerization. Furthermore, we show that by varying the electric field perpendicular to the supramolecular functionalized graphene, additional tailoring of graphene doping can be accomplished.
25

High Performance Fiber Lasers with Spectral, Thermal and Life Time Control

Jelger, Pär January 2009 (has links)
This thesis contains the results of research in the fields of spectral control, efficiency andlifetime of high-power, rare-earth doped fiber lasers, properties which are of greatimportance for scientific and industrial applications. Volume Bragg gratings (VBGs) has forthe first time been used together with fiber lasers and the laser performance in terms ofspectral purity, thermal stability, and tunability was evaluated. It was found that VBGs arean excellent high-contrast spectral filter for many fiber laser designs where bulk optics arenecessary, or for speciality fibers such as photonic crystal fibers or large-mode area fibers. Itis also shown that they work equally well in low power and very high-power configurations,i.e. for fiber lasers ranging three orders of magnitude in output power, from ~100 mW to &gt;100 W. Furthermore, VBGs are shown to work very well as tunable spectral filters,producing a narrow emission linewidth in a compact setup. Concerning efficiency, it was shown how cryogenic cooling of the fiber gain-mediasubstantially increased the efficiency. The reasons are an increased pump absorption, anincreased gain cross-section, and a decreased threshold. The broad spectral output resultingfrom the low temperatures is shown to be easily mitigated by implementing a VBG as oneof the cavity mirrors. The low operating temperature is also shown to efficiently suppressself-pulsing in the fiber laser, which, if left unchecked, can lead to catastrophic break-downof the fiber end-faces. The increased absorption and suppressed self-pulsing allowed a fiberlength long enough to almost completely absorb the pump, which meant that, for the samepump power, more than 60 % higher output-power was attained. Finally, the lifetime issue of Yb-doped fiber lasers was addressed. It was found that Cecodopingsubstantially reduced the photodarkening-rate while leaving other fiber parametersessentially unchanged. This is especially important for Yb-doped fiber lasers emitting at 980nm, as the high inversion required make them very susceptible to photodarkening. It wasshown that the output power in Yb-doped fiber lasers degraded quickly when no Cecodopingwas present and, conversely, with the right Yb/Ce-codoping ratio, degradationfreelasing could be achieved for many hours. The research results obtained in this work could be of great interest to scientists andengineers working with spectroscopy, display systems, non-linear optics to just name a fewexamples. / QC 20100721
26

Quantum coherence in degenerate Bose gases

Vaughan, Timothy Unknown Date (has links)
The central theme of this thesis is that of coherence in bosonic matter-wave fields. Analogous to optical coherence; the measure of the capacity of a photonic beam to produce fringes upon interference; matter-wave coherence is in many ways the defining characteristic of the BEC phase of identical massive bosons. Its study therefore plays a critical role in the quest to better understand the physics of ultra-cold quantum gases, which has been the goal of this research. This work approaches coherence from a number of different angles and is for this reason presented in two parts. The first of these delves into the physics of perfectly coherent matterwave fields which are adequately described by ‘mean field’ equations, while the second is devoted to origins and repercussions of the diminished coherence evident in actual atom laser experiments. The presentation of the original work of this project begins with a detailed study of the interaction between an atomic and a molecular condensate, coherently coupled at zero temperature via one of several possible mechanisms (a Feshbach resonance, for example) in three spatial dimensions. Despite the presence of repulsive scattering interaction between the atoms, the mean-field equations of motion are known to support bright solitary waves — time-independent solutions which remain localised even in the absence of a trapping potential. (These solutions are the matter-wave analogue of spatio-temporal solitons in quadratic nonlinear media, but can also represent stationary states of the Schr¨odinger-Newton equations describing bosons interacting via a gravitational field.) Ignoring all interactions save the repulsive inter-atomic scattering mentioned, a variational ansatz approach is employed to analytically approximate these stationary solutions using Gaussian density distributions of the atomic and molecular clouds. By evolving these approximate solutions numerically, a comprehensive map of the accessible parameter space is constructed, showing primarily stable localised propagation. Parameter space regions where the approximate Gaussian solutions display strong ‘breathing’ oscillations are identified, and a modified ansatz having exponentially decaying tails is found to dramatically reduce the amplitude of these oscillations. Finally, by seeding a numerical relaxation algorithm with our Gaussian solutions, we find that the only parameter space region in which the approximate solutions diffuse under propagation is also devoid of exact localised stationary solutions. The discussion then proceeds beyond the scope of mean field theory, and turns to a detailed treatment of the quantum mechanical observable corresponding to the centre of mass of systems of identical particles. Firstly, careful consideration is given to its operational definition in the presence of fluctuating particle numbers. Possible pitfalls due to naive approximations when the number fluctuations are large are also addressed. Attention is then given to the fundamental quantum noise associated with this variable, which provides a physical mechanism for diminished first order coherence in degenerate Bose gases, even at zero temperature. Characteristic lower bounds (standard quantum limits) to the resulting mean position uncertainty are identified both for systems of identical bosons and identical fermions with comparable density profiles. Interestingly, fermions are found to have an intrinsically lower mean-position uncertainty than bosons, a fact which is attributed to the action of Pauli repulsion between atoms confined to a fixed density distribution. The results of numerical simulations of the exact quantum evolution of mean position variance are then presented. These demonstrate firstly the quantum diffusion of the mean position of one dimensional matter-wave solitons and secondly the evolution of variance in the centre of mass of a Bose gas undergoing forced evaporative cooling. Finally, attention is paid to the fact that the Penrose-Onsager criterion, which essentially equates Bose condensation with perfect first-order matter-wave coherence, fails to correctly detect the presence of BEC when a priori knowledge of the exact condensate mode is imperfect or unavailable. Insight is gained by drawing analogies between this criterion and entropic measures of entanglement between particular system subspaces. This motivates employment of the concept of entanglement of formation as a means to providing a more accurate measure of condensation in the general case of mixed system states. Unfortunately, this new measure remains adversely sensitive to superpositions of condensate modes. For this reason, alternative criteria based on higher order particle number correlation functions are also proposed.
27

The Role Of N-Terminal Acidic Inserts On The Dynamics Of The Tau Protein.

Redmond, Miranda 01 January 2017 (has links)
Alzheimer’s disease (AD), the most prevalent neurodegenerative disease, is characterized in part by disruptions in axonal transport. Axonal transport is a process by which motor proteins carry organelles and other cargo made in the neuronal cell body along microtubule tracks to distal regions of the axon. The microtubule-associated protein (MAP) Tau plays a crucial role in regulating axonal transport, and is implicated in the development of AD and other types of dementia collectively known as Tauopathies. Tau is a neuronal-specific MAP that has six isoforms alternatively spliced from a single gene. These isoforms differ by the presence of zero, one, or two N-terminal acidic inserts and three or four C-terminal microtubule binding repeats. Tau is also known to be an intrinsically disordered protein that undergoes a dynamic equilibrium between static and diffusive states on the microtubule surface. The dynamics of Tau are important in the regulation of motor protein mediated axonal transport in neurons. Isoform-specific differences in the dynamic behavior of Tau on the microtubule surface, however, are not yet fully understood. Diffusive Tau is thought to be stabilized by electrostatic interactions between its N- and C-termini while static Tau is proposed to be extended with its C-terminal repeats contacting the microtubule and the N-terminus projected away from the microtubule surface. Thus, the N-terminal inserts may help regulate Tau’s dynamic behavior and function during axonal transport. In this study, the dynamics of two different isoforms of Tau, both with three-microtubule binding repeats but a different number of N-terminal acidic inserts, were assessed using single molecule imaging techniques and novel data analysis methods.
28

The effect of an adsorbate upon secondary emission properties of low -energy ion bombarded metallic and semiconductor substrates

Vogan, Wendy Sara 01 January 2003 (has links)
The absolute probabilities for low energy ion bombardment induced secondary emission of electrons and anions have been measured as a function of adsorbate coverage of the surface. The primary ion beams were incident at less than 500 eV on metallic, semiconducting and insulating surfaces. The adsorbate used was chiefly oxygen, and the coverage range studied was zero to about one monolayer. The presence of an adsorbate was observed to significantly enhance secondary emission of electrons and anions in the case of O - and Na+ impacting metallic (W, Al) and semiconducting (Si) substrates; the effect of the adsorbate was little to minimal in the case of N2+, Ar+, Ne+ and He+ impacting these substrates, however. No appreciable adsorbate-induced changes in the secondary emission probability were measured for any of the probe beams incident on the insulating (MgO) substrate.;Secondary electron and anion kinetic distributions were also measured, as functions of projectile impact energy and of adsorbate exposure. The most probable energy of the secondary products was in the 1--3 eV region; the form of the distributions had little to no dependence on the impact energy or adsorbate exposure, but varied with different projectile and substrate species. The identities of the secondary anions were determined through mass spectroscopic techniques; atomic ion forms of the adsorbate and simple adsorbate-substrate molecular ions are the predominantly emitted species.;The data are discussed in terms of a model in which a molecular anion residing on the surface is collisionally excited, its subsequent decay giving rise to both electron and negative ion emission into the vacuum. The results of N2+, Ar+, Ne+ and He+ bombardment, in which secondary emission does not appear to be adsorbate-mediated, suggest that there exists a condition of excitation energy resonance which projectiles having high ionization potentials do not satisfy; experimental evidence shows that incident O- and Na+ satisfy this condition to a greater degree than do the above projectiles. The concepts of this excitation model can be represented mathematically and made to fit the observations with careful parameter choice; the parameters can be shown to reflect properties of the interaction.
29

The semiclassical description of the energy spectrum of hydrogen in near-perpendicular fields

Schleif, Christopher Robert 01 January 2008 (has links)
We examine the energy spectrum of hydrogen in weak near-perpendicular electric and magnetic fields using quantum computations and semiclassical analysis. The structure of the quantum spectrum is displayed in a lattice constructed by plotting the difference between total energy and first order energy versus first order energy, for all states of a given principal quantum number n. For some field parameters, the lattice structure is not regular, but has a lattice defect structure which may be characterized by the transport of lattice vectors. We find that in near-perpendicular fields the structure of the spectrum is divided into six distinct parameter regions, which we characterize by the presence and type of lattice defect. to explain this structure we examine a corresponding classical system which we have derived by classical perturbation theory. Starting from Kepler action and angle variables, we give a derivation of a classical Hamiltonian to second order in perturbation theory; the derivation is different from, but the final result agrees with previous work. We focus especially on the topological structure of the reduced phase space and on the resulting topological structure of the trajectories. We show that construction of action variables by the obvious methods leads to variables that have discontinuous derivatives. Smooth continuation of these "primitive" action variables leads to action variables that are multivalued. We show how these multivalued actions lead to lattice defects in the quantum spectrum. Finally we present a few correlation diagrams which show how quantum eigenvalues evolve from one region of near-perpendicular parameter space to another and show how the structure of the quantum correlations is related to structures in the classical phase space.
30

Laser desorption from a room temperature ionic liquid

Harris, Peter Ronald 01 January 2009 (has links)
We report laser desorption from a Room Temperature Ionic Liquid (RTIL) as a novel source for time of flight mass spectrometry. We use the 2nd harmonic of an Nd:YAG laser to deposit intensities of 1-50 MW/cm2 via backside illumination onto our RTIL desorption sample. A microstructured metal grid situated on top of a glass microscope slide coated with RTIL serves as our desorption sample. The RTIL we use, 1-Butyl, 3-Methylimidazolium Hexafluorophosphate, remains liquid at pressures below 10-8 torr. The use of liquid desorption sample allows for improved surface conditions, homogeneity and sample life as compared to Matrix Assisted Laser Desorption Ionization (MALDI) techniques. Our desorption technique is also unique as it allows the study of both multiphoton and acoustic desorption processes within the same time of flight spectra. Our technique yields intrinsically high resolution, low noise data. We observe differences between ion species in their preference for desorption by a particular desorption method. Specifically, we observe desorption solely by acoustic means of an entire RTIL molecule adducted with an RTIL cation. Finally, we report the applicability of this technique for the desorption of biomolecules.

Page generated in 0.0456 seconds