• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 441
  • 120
  • 108
  • 55
  • 43
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 966
  • 966
  • 147
  • 124
  • 119
  • 114
  • 100
  • 91
  • 79
  • 79
  • 72
  • 66
  • 63
  • 60
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Reflectivity measurements on semi-conductors

Horning, Richard Dale January 2011 (has links)
Digitized by Kansas State University Libraries
112

THE MODIFICATION OF ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL PROPERTIES IN THIN FILMS OF TRI- AND TETRAVALENT METAL PHTHALOCYANINES (GAS SENSORS, PHOTOVOLTAICS, ORGANIC SEMICONDUCTOR(S)).

Klofta, Thomas James January 1986 (has links)
Four different trivalent and tetravalent metal phthalocyanine systems (chlorogallium, chloroindium, vanadyl, and titanyl phthalocyanines) were used singly to prepare thin films (0.05-2.0 micron thickness) on gold, optically transparent substrates. The photoelectronic properties of these electrodes could be modified either by altering the growth conditions (i.e. rate of sublimation, cleanliness of substrate) or by dosing the thin films with either hydrogen or oxygen at elevated temperatures (150°C). The properties of these thin films were monitored by electron microscopy, UV-visible spectrophotometry, X-ray and Ultra-violet surface spectroscopies, and a variety of electrochemical and photoelectrochemical techniques. All four systems behaved in a manner similar to a p-type semiconductor when prepared at rapid rates (10-20 A/min) on gold substrates. In the dark, for contacting redox couples with Eᵒ’ values negative of +0.6V, the phthalocyanine electrodes showed negligible dark currents. Upon illumination, the photoelectrodes only produced positive photopotentials. Chlorogallium phthalocyanine thin films could be made to produce both positive and negative photopotentials when grown at slow rates (1-5 A/min) on clean, gold substrates. These chlorogallium phthalocyanine electrodes regained the properties of a p-type semiconductor after being dosed with oxygen for 48 hours at 150°C. X-ray Photoelectron Spectroscopy confirmed the presence of a high concentration of oxygen at the surface of all of the p-type phthalocyanine electrodes. The oxygen may accept electron density from the phthalocyanine macrocycle to cause the Fermi level to move down in energy toward its valence band edge. Dosing the film with hydrogen caused the electrode to exhibit its original intrinsic characteristics. This variability in electrical properties as a function of gas dopant may lead to the development of a sensitive gas sensing device. Ultra-violet Photoelectron Spectroscopy, as well as molecular orbital calculations, were applied to the chlorogallium phthalocyanine system to determine the molecular orbital contributions to its valence and conduction bands. Photoelectrochemical cells made from electrodes of chlorogallium and vanadyl phthalocyanines exhibited power conversion efficiencies in excess of 0.1%. The vanadyl and titanyl phthalocyanine electrodes were also effective catalysts for the photoreduction of H⁺ to H₂.
113

Optical, chemical, and structural properties of thin films of samarium-sulfide and zinc-sulfide.

Hickey, Carolyn Frances. January 1987 (has links)
The development of materials for optical thin film application is essential to progress in fields such as optical data storage and signal processing. Samarium sulfide (SmS) thin films were prepared by reactive evaporation of samarium in hydrogen sulfide (H₂S). These displayed optical switching properties despite the presence of large amounts of carbon and oxygen. They are therefore potentially useful for data storage. The semiconductor to metal phase transition was characterized by x-ray diffraction and spectrophotometry. The observed optical response was modelled by a Bruggeman effective medium calculation. Success with this analysis suggests it as a means for predicting performance in subsequent applications. Zinc sulfide (ZnS) thin films were prepared by molecular beam epitaxy (MBE). Implimentation of an H₂S treated silicon surface provided good chemical bond match in addition to a good lattice match. Atomic layer epitaxy was unsuccessfully explored as a means to grow ZnS from zinc and H₂S reactants, therefore other reactants are proposed. Both the MBE and ALE work is directed at the long term goals of producing p-type ZnS, which is suitable for semiconductor lasing at short wavelengths, and high quality SmS thin films.
114

Optical properties of intermixed quantum wells and its application in photodetectors

李秀文, Lee, Siew-wan, Alex. January 1999 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
115

Exciton related optical properties of ZnO

Shi, Shenlei., 施申蕾. January 2006 (has links)
published_or_final_version / abstract / Physics / Doctoral / Doctor of Philosophy
116

Electro-modulation spectroscopy of arylene vinylene polymers

Gelsen, Olaf Michael January 1993 (has links)
No description available.
117

ROOM-TEMPERATURE OPTICAL NONLINEARITIES IN GALLIUM-ARSENIDE AND FAST OPTICAL LOGIC GATES.

LEE, YONG HEE. January 1986 (has links)
This dissertation studies the physics of room-temperature optical nonlinearities in GaAs and their application to the optical logic gates. The microscopic origins of the room-temperature optical nonlinearities in GaAs are investigated experimentally and theoretically. The data of nonlinear absorption measurement are analyzed in the framework of a semiconductor plasma theory in combination with excitation-dependent line broadening. The importance of the plasma screening of the continuum-state Coulomb enhancement and band filling are emphasized for GaAs at room temperature. Optical bistability and optical logic gating are direct consequences of the nonlinear refractive index changes in etalons. The nonlinear index changes are directly measured by a new technique of observing the Fabry-Perot transmission peak shift using the self-photoluminescence as a broad-band source. The validity of a Kramers-Kronig technique under quasi-steady state conditions is crosschecked by an independent measurement of Δn under identical pumping conditions. Thermal index changes are also directly measured to establish the criteria on the temperature stability condition that is needed for reliable operation of devices based on dispersive nonlinearities. Optical logic gates based on dispersive optical nonlinearities may be the critical components of an all-optical computer in the future. Five optical logic functions are demonstrated in a nonlinear GaAs/AlGaAs MQW etalon. Specially designed dielectric mirrors are used to observe low-energy (3-pJ) operation of optical logic gates. Parallel operation using as many as eight optical logic devices is achieved with Wollaston prisms. Toward practical devices, optical logic gating using diode lasers is demonstrated in a setup much smaller than the usual argon-laser pumped dye laser setup. The cycle time of optical logic devices is limited, not by the switch-on time, but by the switch-off time which depends on the carrier relaxation rather than the switch-on time. To reduce the carrier relaxation time windowless GaAs is employed to take advantage of the faster surface recombination of carriers at the GaAs/dielectric mirror interface compared to that at the GaAs/GaAlAs interface. The speed and effectiveness of the windowless GaAs are compared with those of the proton-bombarded GaAs as optical logic gates.
118

NONLINEAR OPTICAL PHENOMENA IN ZINC OXIDE WAVEGUIDES (INTEGRATED OPTICS, NONLINEAR COUPLING).

FORTENBERRY, RANCE MORGAN. January 1986 (has links)
This dissertation reports on the development of a nonlinear surface spectroscopy and the observation of nonlinear optical phenomena using sputtered zinc oxide waveguides. The first is known as Surface Coherent Raman Spectroscopy, or SCRS, and is capable of monolayer sensitivity. The second, discovered during the development of SCRS, is optical limiting and a previously unobserved form of optical switching based on an absorptive nonlinear coupling mechanism. Overviews of the theories of waveguiding, linear coupling, and SCRS are given. Experiments showing that the spectrum of a monolayer coverage of molecules on the surface of a metal oxide waveguide can be obtained using SCRS are reported. For this purpose ZnO waveguides were fabricated using rf magnetron sputtering; the details of which are presented. The results of the characterization of these films, using an optical loss technique, Rutherford backscattering, and X-ray diffraction, are also presented. Experiments are described and data are presented to show the existence of optical limiting and optical switching phenomena in ZnO waveguides. The experimental dependence of these phenomena on input pulse energy, wavelength, temporal pulse width, and type of distributed coupling mechanism is described. Existing nonlinear distributed coupler theory is extended to include the effect of an absorptive nonlinearity and the results of this theory are used to explain some of the characteristic features of the experimental results. A value of n₂ ≅ 2 x 10⁻¹⁶ m²/W for the nonlinear coefficient of sputtered ZnO films is obtained.
119

COUPLING AND PROPAGATION OF SURFACE PLASMONS IN THE FAR-INFRARED (NEAR-MILLIMETER WAVES, SUB-MILLIMETER WAVES).

STEIJN, KIRK WILLIAM. January 1986 (has links)
This work describes a study of the propagation properties of a modified surface plasmon mode, and of the coupling properties of that mode using a grating coupler. The surface plasmon, a polariton involving coupling of electromagnetic waves to the plasma oscillations of a metal, is modified by the application of a dielectric overlayer to the interface between the metal and air. In the far infrared region of the electromagnetic spectrum, the overlayer causes dramatic changes in several properties of the mode, which can be verified by measuring the propagation length of the mode. Measurements at a wavelength of 118.8 μm of the propagation length as a function of the thickness of a polycrystalline silicon overlayer on silver showed that the mode has the expected properties. They also indicated that the Drude model of the dielectric function of the silver is valid at 118.8 μm, even when using established Drude parameters, which are based on measurements in the visible and near infrared region of the electromagnetic spectrum. The coupling study measured the fundamental coupling parameters, also at a wavelength of 118.8 μm, for coupling via a grating between free-space waves and the surface plasmon, and measured the effect of the overlayer on these parameters. Efficient coupling was achieved, but a theoretical treatment of the coupling system proved to be beyond the scope of first-order grating-coupler theory. This was true despite the fact that the grating amplitude was a small fraction of the wavelength, a common criterion for the application of such a theory. Several possible reasons for the breakdown of the theory were considered, but definite answers require additional experiments. The most prominent possibilities are the shape factor, and the depth of the grating compared to the penetration depth of the fields into the metal. Though not all the data is completely explained, the studies herein demonstrate that the overlayer eliminates many of the deficiencies which limit the generation and control of far-infrared surface plasmons.
120

OPTICS FOR LARGE TELESCOPE.

WAN, DER-SHEN. January 1987 (has links)
There are two topics in this dissertation: one is to develop new phase reduction algorithms for test interferograms especially of large optics and the other one is to find more accurate analytical expression of surface deflection due to gravity when the mirror is supported in the axial direction. Two new algorithms for generating phase maps from interferograms are developed. Both methods are sensitive to small-scale as well as large-scale surface errors. The first method is designed to generate phase from an interferogram that is sampled and digitized only along fringe centers, as in the case of manual digitization. A new interpolation algorithm uses the digitized data more efficiently than the fitting of Zernike polynomials, so the new method can detect small-scale surface error better than Zernike polynomial fitting. The second algorithm developed here is an automatic phase reduction process which works on test interferograms recorded by CCD camera and transferred digitally to a personal computer through a frame grabber. The interferogram results from interference of the test wavefront with a tilted reference wave-front. Phase is generated by assuming it to be proportional to the intensity of the interferogram, apart from changes of sign and offset occurring every half fringe so as to make the phase increase monotoically. The error of the new algorithm is less than 1/20 waves in the wavefront, which can be reduced further by averaging several phase maps which are generated by interferograms with random phase shifts. The new algorithm is quick and involves no smoothing, so it can detect surface errors on large mirrors on a scale of several centimeters. A new model is developed to calculate analytically the surface deflection of a mirror supported axially on multiple points. It is based on thin plate theory, but considerations of thickness variation of a curved mirror, lightweight honeycomb structure and shear are included. These additions improve the accuracy of the calculated surface deflection, giving results close to those obtained from the accurate but computer intensive finite element model.

Page generated in 0.0861 seconds