• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 14
  • 12
  • 9
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 140
  • 140
  • 32
  • 27
  • 24
  • 23
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical spanners and improved optical tweezers

Simpson, Neil B. January 1998 (has links)
This thesis describes the experimental and theoretical work that investigated the transfer of orbital angular momentum from light to matter. This was achieved by combining two established areas of laser physics which were "optical tweezers" and Laguerre-Gaussian laser modes. The optical tweezers are essentially a tightly focussed laser beam from a high numerical aperture microscope objective lens, which traps particles in three dimensions just below the beam focus. By incorporating a Laguerre- Gaussian laser mode into the tweezers system, the trapping efficiency was doubled. These improved optical tweezers have been successfully demonstrated both theoretically and experimentally. In addition to the spin angular momentum which is associated with the polarisation state, the Laguerre-Gaussian laser modes also possess orbital angular momentum. The "optical spanners" utilised this property by transferring orbital angular momentum from the laser beam to the trapped particle, causing it to rotate whilst being held in the optical trap. This effect was theoretically modelled and experimentally observed. Using the optical spanners, the spin angular momentum of the laser was used to directly cancel the orbital angular momentum in the beam, which was observed as a cessation in rotation of the trapped particle. This demonstrated the mechanical equivalence of the spin and orbital components of angular momentum in a light beam, and gave experimental evidence for the well defined nature of the orbital angular momentum present in Laguerre-Gaussian laser modes.
2

An investigation into some novel areas of optical manipulation

Cui, Liyong 01 January 2017 (has links)
Since its inception in 1970, optical manipulation has evolved into a versatile tool across many fields of science. Notably, the now widely employed optical tweezers invented in 1986 is a good example, which is in essence a strongly focused fundamental Gaussian beam. Although the optical tweezers remained as an important tool in optical manipulation, the shaped structured light such as an optical vortex beam also provides unusual light patterns and promotes exciting discoveries. This thesis is devoted to some unsolved theoretical aspects of optical manipulation. Since optical force acting on a micro-particle is typically on the order of pN and seldom larger than nN, it is a common belief that optical force is relevant in particle manipulation only when all other forces are comparable or smaller than the optical force. In chapter 2, surprisingly we showed that this is not always the case. Here, we find that under appropriate condition, optical vortices can make a sphere orbit around the beam center owing to the non-conservative optical force. If the sphere is attached to a mechanical spring, the spring can be stretched significantly even when the mechanical spring is orders of magnitude stronger than the optical force. Since its inception in 1970, optical manipulation has evolved into a versatile tool across many fields of science. Notably, the now widely employed optical tweezers invented in 1986 is a good example, which is in essence a strongly focused fundamental Gaussian beam. Although the optical tweezers remained as an important tool in optical manipulation, the shaped structured light such as an optical vortex beam also provides unusual light patterns and promotes exciting discoveries. This thesis is devoted to some unsolved theoretical aspects of optical manipulation. Since optical force acting on a micro-particle is typically on the order of pN and seldom larger than nN, it is a common belief that optical force is relevant in particle manipulation only when all other forces are comparable or smaller than the optical force. In chapter 2, surprisingly we showed that this is not always the case. Here, we find that under appropriate condition, optical vortices can make a sphere orbit around the beam center owing to the non-conservative optical force. If the sphere is attached to a mechanical spring, the spring can be stretched significantly even when the mechanical spring is orders of magnitude stronger than the optical force
3

Light-matter interactions : from the photophysics of organic semiconductors to high spatial resolution optical tweezer-controlled nanoprobes

Kendrick, Mark J. 25 May 2012 (has links)
Studies of light-matter interactions in organic semiconductors and in optical tweezer trapping of nanoparticles are presented. In the research related to organic semiconductor materials, a variety of novel materials and their composites have been characterized, and physical mechanisms behind their optoelectronic properties have been established. Three novel functionalized hexacene derivatives were deemed sufficiently stable to enable characterization of these materials in devices. From dark current and photocurrent measurements of the hexacene thin-films, it was determined that all three derivatives are photoconductive in the near-infrared, and space charge limited mobility values were obtained. In addition, physical mechanisms behind charge transfer, charge carrier photogeneration, and charge transport in small-molecule donor/acceptor composite films have been systematically studied. In these studies, it was determined that the charge transfer from the donor to the acceptor molecule can result in either an emissive charge transfer exciton (exciplex) or a non-emissive charge transfer exciton formation, depending on the energy difference between LUMO of the donor and the acceptor. However, the most dramatic trends in photoluminescent and photoconductive properties of the donor/acceptor composites were correlated with the separation between the donor and acceptor molecules at the donor/acceptor interface. In particular, composite films with larger separations exhibited electric field-assisted charge transfer exciton dissociation, which contributed to nanosecond time-scale photocurrents under a 500 ps pulsed photoexciation. Large donor/acceptor separation also resulted in reduced charge carrier recombination, which led to a factor of 5-10 increase in continuous wave photocurrents in certain donor/acceptor composites, as compared to those in pristine donor films. In the optical tweezer based studies, work towards the development of high spatial resolution optical tweezer controlled nanoprobes is presented. In particular, the possibility of exploiting the optical resonance of a particle to increase the optical tweezer forces acting on it within the trap has been investigated. Such an increase in the force would improve the potential spatial resolution of an optical tweezer controlled probe. Experimental results and numerical simulations on micron sized resonant dielectric particles showed a small increase in the optical forces that confine such particles within the trap, when tweezer trapping is conducted at wavelengths on the red-side of the optical resonance. Preliminary work on optical tweezer controlled ion/pH sensitive probes and on surface charge measurements is also reported. / Graduation date: 2012
4

Identification of biomolecules by mechanical modulation Raman microscopy

Hinko, Kathleen Ann 08 July 2013 (has links)
Raman microscopy is a tool used by physicists to collect molecular information from a wide variety of samples. Biophysicists have increasingly made use of Raman microscopy in combination with optical tweezers to identify the molecular makeup of structures inside cells. There are high levels of background and noise in Raman spectra from cells, however, that obscure low intensity scattering peaks and prevent complete molecular characterization. We have designed and built a Mechanical Modulation Raman Microscope(MMRM) that is capable of background subtraction and noise reduction for Raman spectra from cells in vivo. There are two mechanisms of modulation: (1) three-axis stage modulation for objects fixed to the coverslip and (2) separate optical trap modulation for objects in solution. In both cases, objects of interest are modulated in and out of the Raman excitation volume while spectra are collected. Difference spectra are created by subtracting the spectrum without the object from the spectrum including the object. These difference spectra are averaged over the number of cycles of modulation. With the mechanical modulation technique, the background in Raman spectra is removed, and the signal-to-noise ratio is improved by two orders of magnitude. This technique was applied to fission yeast cells. Mechanical modulation Raman spectra of exponentially growing cells and starved cells were collected in three dimensions, and spatial differences were observed in the molecular composition for different metabolic states of individual yeast cells. / text
5

Optical trapping : optical interferometric metrology and nanophotonics /

Lee, Woei Ming. January 2010 (has links)
Thesis (Ph.D.) - University of St Andrews, April 2010.
6

Development of a Chromokinesin-Microtubule System for use in Optical Tweezer-Based Processivity Assays

Opitz, Anna E. 03 December 2010 (has links)
No description available.
7

Longitudinal optical binding

Metzger, Nikolaus K. January 2008 (has links)
Longitudinal optical binding refers to the light induced self organisation of micro particles in one dimension. In this thesis I will present experimental and theoretical studies of the separation between two dielectric spheres in a counter-propagating (CP) geometry. I will explore the bistable nature of the bound sphere separation and its dependency on the refractive index mismatch between the spheres and the host medium, with an emphasis on the fibre separation. The physical under pining principle of longitudinal optical binding in the Mie regime is the refocusing effect of the light field from one sphere to its nearest neighbour. In a second set of experiments I developed means to visualise the field intensity distribution responsible for optical binding using two-photon fluorescence imaging from fluorescein added to the host medium. The experimental intensity distributions are compared to theoretical predictions and provide an in situ method to observe the binding process in real time. This coupling via the refocused light fields between the spheres is in detailed investigated experimentally and theoretically, in particular I present data and analysis on the correlated behaviour of the micro spheres in the presence of noise. The measurement of the decay times of the correlation functions of the modes of the optically bound array provides a methodology for determining the optical restoring forces acting in optical binding. Interestingly micro devices can be initiated by means of the light-matter interaction. Light induced forces and torques are exerted on such micro-objects that are then driven by the optical gradient or scattering force. I have experimentally investigate how the driving light interacts with and diffracts from the motor, utilising two-photon imaging. The micromotor rotation rate dependence on the light field parameters is explored and theoretically modelled. The results presented will show that the model can be used to optimise the system geometry and the micromotor.
8

Novel laser beams for optical trapping and tweezing.

Ismail, Yaseera. January 2011 (has links)
Optical trapping and tweezing has been around for the last 30 years and since found its place in the fields of physics and biology. Over the years this technique has advanced exceedingly and is a unique tool to carry out research in the micrometre and nanometre scale regime. The aim of this dissertation was to illustrate that an optical trapping and tweezing system is an effective tool for the manipulation of micron sized particles and that using such a system allows one the ability to accurately and precisely measure optical forces in the piconewton scale. A custom built single gradient optical trapping system was built to illustrate the manipulation of micron sized particles. Here we will highlight some of the key components of such a system and give an explanation of how these components affect the optical trap. To enhance this system, we exploit the ability to shape light and in particular laser light to generate novel laser beams. This was achieved using a diffractive optical element known as a spatial light modulator (SLM). A spatial light modulator is an electronically addressed optical element which when incorporated into an optical system effectively manipulates the phase of light in order to generate various novel laser beams. In particular these novel laser beams include Laguerre-Gaussian, Bessel and recently proposed Bessel-like beams. Each of these beams contains interesting properties which can be beneficially exploited. Laguerre-Gaussian beams are particularly known as ‘donut’ shaped beams since they have a central dark hole. Increasing the order of these Laguerre-Gaussian beams leads to an increase in the central dark region. These beams are of particular interest since they carry orbital angular momentum. This is not easily observed; however, when incorporated into the optical trapping system, leads to the rotation of trapped particles due to the transfer of photons carrying orbital angular momentum. Bessel and Bessel-like beams on the other hand are classes of beam that possess interesting non-diffracting and self-reconstructive properties upon encountering an obstacle. Here the generation and properties of these novel laser beams will be discussed in detail. Furthermore it is well known that these novel laser beams prove highly useful when incorporated into an optical trapping system hence we will illustrate the effects on a trapped particle when incorporating a Laguerre-Gaussian beam carrying a topological charge of one. It is expected that the trapped particle should rotate due to the transfer of orbital angular momentum. The knowledge gained from beam shaping and the means to trap micron sized particles optically allows one the ability to incorporate this technique in a number of fields, including the promising field of microfluidics. This is an emerging field that deals with investigating fluid properties at the nano and microlitre regime. Optical tweezers integrated into a microfluidic device are beneficial since they are an adequate tool for measuring fluid flow using Stokes’ Law. / Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2011.
9

The mechanics of adhesion polymers and their role in bacterial attachment

Zakrisson, Johan January 2015 (has links)
Bacterial resistance to antibiotics is increasing at a high rate in both developing and developed countries. To circumvent the problem of drug-resistant bacterial pathogens, we need to develop new effective methods, substances, and materials that can disarm and prevent them from causing infections. However, to do this we first need to find new possible targets in bacteria to approach and novel strategies to apply.Escherichia coli (E. coli) bacteria is a normal member of the intestinal microflora of humans and mammals, but frequently cause diverse intestinal and external diseases by means of virulence factors, which leads to hundreds of million sick people each year with a high mortality rate. An E. coli bacterial infection starts with adhesion to a host cell using cell surface expressed adhesion polymers, called adhesion pili. Depending on the local environment different types of pili are expressed by the bacteria. For example, bacteria found in the gastrointestinal tract commonly express different pili in comparison to those found in the urinary tract and respiratory tract. These pili, which are vital for bacterial adhesion, thereby serve as a new possible approach in the fight against bacterial infections by targeting and disabling these structures using novel chemicals. However, in order to develop such chemicals, better understanding of these pili is needed.Optical tweezers (OT) can measure and apply forces up to a few hundred pN with sub-pN force resolution and have shown to be an excellent tool for investigating mechanical properties of adhesion pili. It has been found that pili expressed by E. coli have a unique and complex force-extension response that is assumed to be important for the ability of bacteria to initiate and maintain attachment to the host cells. However, their mechanical functions and the advantage of specific mechanical functions, especially in the initial attachment process, have not yet been fully understood.In this work, a detailed description of the pili mechanics and their role during cell adhesion is presented. By using results from optical tweezers force spectroscopy experiments in combination with physical modeling and numerical simulations, we investigated how pili can act as “shock absorbers” through uncoiling and thereby lower the fluid force acting on a bacterium. Our result demonstrate that the dynamic uncoiling capability of the helical part of the adhesion pili modulate the force to fit the optimal lifetime of its adhesin (the protein that binds to the receptor on the host cell), ensuring a high survival probability of the bond.iiiSince the attachment process is in proximity of a surface we also investigated the influence of tether properties and the importance of different surface corrections and additional force components to the Stokes drag force during simulations. The investigation showed that the surface corrections to the Stokes drag force and the Basset force cannot be neglected when simulating survival probability of a bond, since that can overestimate the probability by more than an order of magnitude.Finally, a theoretical and experimental framework for two separate methods was developed. The first method can detect the presence of pili on single cells using optical tweezers. We verified the method using silica microspheres coated with a polymer brush and E. coli bacteria expressing; no pili, P pili, and type 1 pili, respectively. The second method was based on digital holography microscopy. Using the diffraction of semi-transparent object such as red blood cells, we showed that this method can reconstruct the axial position and detect morphological changes of cells.
10

Dynamics of composite beads in optical tweezers and their application to study of HIV cell entry

Beranek, Vaclav 21 September 2015 (has links)
In this thesis, we report a novel symmetry breaking system in single-beam optical trap. The breaking of symmetry is observed in Brownian dynamics of a linked pair of beads with substantially differing radii (500nm and 100nm). Such composite beads were originally conceived as a manipulation means to study of Brownian interactions between mesoscopic biological agents of the order of 100 – 200 nm (viruses or bacteria) with cell surfaces. During the initial testing of the composite bead system, we discovered that the system displayed thermally activated transitions and energetics of symmetry breaking. This thesis, while making a brief overview of the biological relevance of the composite bead system, focuses primarily on the analysis and experimentation that reveals the complex dynamics observed in the system. First, we theoretically analyze the origin of the observed symmetry breaking using electromagnetic theory under both Gaussian beam approximation and full Debye-type integral representation. The theory predicts that attachment of a small particle to a trapped microsphere results in creation of a bistable rotational potential with thermally activated transitions. The theoretical results are then verified using optical trapping experiments. We first quantify the top-down symmetry breaking based on measurement of the kinetic transition rates. The rotational potential is then explored using an experiment employing a novel algorithm to track rotational state of the composite bead. The results of the theory and experiments are compared with results of a Brownian dynamics simulation based on Smart Monte Carlo algorithm.

Page generated in 0.0738 seconds