• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3387
  • 676
  • 480
  • 359
  • 134
  • 72
  • 52
  • 50
  • 50
  • 50
  • 50
  • 50
  • 50
  • 41
  • 40
  • Tagged with
  • 6789
  • 1838
  • 1166
  • 948
  • 831
  • 731
  • 680
  • 633
  • 627
  • 566
  • 558
  • 551
  • 542
  • 532
  • 425
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

On the Information Content in Unresolved Imaging

Shen, Zhean 01 January 2021 (has links) (PDF)
Imaging is almost synonymous with optics. Imaging is the process of using light to form a tangible or visible representation, an imitation (imitari) of a material property. There are many situations, however, where one can only aspire to 'sense making' rather than forming an image per se. In other words, objects cannot be directly resolved by conventional intensity-based imaging, a situation commonly referred to as 'unresolved imaging'. However, there is still information retained in other properties of light, which can be exposed by other means. In this thesis I will discuss two typical situations: subwavelength and multiple scattering, which are very different in terms of the spatial extent of light-matter interaction. In the subwavelength regime, information can be encoded through both inelastic and elastic interaction processes. When the latter is the preferred approach, observables such as optical phase are determined by the properties of evanescent waves while the measurements are usually conducted in the far-field. I will describe a novel energetic interpretation of the light-matter interaction in this regime, which provides an accurate estimation of the interaction volume of a single scattering event and of the small phase delay it introduces. I will also show how this minute phase occurring in subwavelength scattering can be quantitatively measured with optimal sensitivity by a polarization-encoded common path system and how it enables subwavelength sizing in a label-free fashion. At the other extreme, evaluating the information transfer in multiple scattering regimes is usually constrained by the computational complexity of the problem. I will describe two forward modeling approaches that alleviate these limitations in non-line-of-sight sensing geometries and in coherent illumination methods for imaging through obscurants. These simplifying descriptions also reveal the fundamental limits for information transfer in these two scenarios.
92

Optimization-Based Approaches to Low-Coherence Optical Diffraction Tomography

Smith-Dryden, Seth 01 January 2022 (has links) (PDF)
Quantitative optical phase imaging techniques, such as optical diffraction tomography (ODT), are useful tools for refractive-index profiling. Many of them, however, rely on the weak-scattering assumptions, thus cannot be applied to multiple-scattering objects, or turbid media. In this thesis, I report several approaches for expanding the efficacy of ODT techniques and adapting them to new applications by use of low-coherence broadband illumination. First, I developed a method for ODT reconstruction using regularized convex optimization with a new phase-based fidelity criterion. The new criterion is necessary because objects with very different refractive-index distributions may produce similar diffracted fields (magnitude and principal-phase) on the detection planes. This surjective, but non-injective relation, attributed to the cyclical nature of the phase, makes optimization algorithms using a field-based cost function prone to local minima, particularly for objects introducing large optical pathlength difference. I developed a phase-based optimization algorithm that avoids this and successfully tested it using simulations on phantoms and experimental data measured from samples of optical fibers. I have developed a method that applies total-variation regularization at each iteration of an iterative framework for ODT, which was developed with co-workers. I performed numerical and experimental tests using various highly scattering objects and demonstrated significant improvement in reconstruction SNR. I have also designed and constructed a new experimental setup for ODT measurement and expanded the new ODT algorithms from 2D to 3D. These algorithms have been numerically and experimentally validated using simulated data and data collected from the new experimental setup. Additionally, I have investigated the use of temporally incoherent illumination in ODT and showed that it enables time-gating of artifacts caused by multiple-scattering. I have further demonstrated that ODT combined with Fourier-transform spectroscopy can be used for spectral tomographic imaging of the wavelength-dependent complex-valued refractive index volumetric distributions.
93

Hybrid Integrated Photonic Platforms and Devices

Chiles, Jeffrey 01 January 2016 (has links)
Integrated photonics has the potential to revolutionize optical systems by achieving drastic reductions in their size, weight and power. Remote spectroscopy, free-space communications and high-speed telecommunications are critical applications that would benefit directly from these advancements. However, many such applications require extremely wide spectral bandwidths, leading to significant challenges in their integration. The choice of integrated platform influences the optical transparency and functionality which can be ultimately achieved. In this work, several new platforms and technologies have been developed to meet these needs. First, the silicon-on-lithium-niobate (SiLN) platform is discussed, on which the first compact, integrated electro-optic modulator in the mid-infrared has been demonstrated. Next, results are shown in the development of the all-silicon-optical-platform (ASOP), an ultra-stable suspended membrane approach which offers broad optical transparency from 1.2 to 8.5 um and enables efficient nonlinear frequency conversion in the mid-IR. This fabrication approach is then taken further with "anchored-membrane waveguides," (T-Guides) enabling single-mode and single-polarization waveguiding over a span exceeding 1.27 octaves. Afterward, a new photonic technology enabling integrated polarization beam-splitters and polarizers over unprecedented bandwidths is introduced, called topographically anisotropic photonics (TAP). Next, results on high-performance microphotonic chalcogenide glass waveguides are presented. Finally, several integrated photonics concepts suitable for further work will be discussed, such as augmentations to T-Guides and a novel technique for quasi-phase-matching.
94

Ultrafast Mechanisms of Nonlinear Refraction and Two-photon Photochromism

Zhao, Peng 01 January 2016 (has links)
Derived from a material's third-order nonlinearity, nonlinear refraction (NLR) occurs at any wavelength in any material, and may exhibit noninstantaneous dynamics depending on its physical origins. The main subject of this dissertation is to investigate the underlying mechanisms responsible for the NLR response in different phases of matter, e.g. liquids, gases, and semiconductors, by extensively using our recently developed ultrafast Beam Deflection (BD) technique. An additional subject includes the characterization of a novel two-photon photochromic molecule. In molecular liquids, the major nonlinear optical (NLO) response can be decomposed into a nearly instantaneous bound-electronic NLR (Kerr effect), originating from the real part the electronic second hyperpolarizability, ?, and noninstantaneous mechanisms due to nuclear motions. By adopting the methodology previously developed for carbon disulfide (CS2), we have measured the NLO response functions of 23 common organic solvents, providing a database of magnitudes and temporal dynamics of each mechanism, which can be used for predicting the outcomes of any other NLR related experiments such as Z-scan. Also, these results provide insight to relate solvent nonlinearities with their molecular structures as well as linear polarizability tensors. In the measurements of air and gaseous CS2, coherent Raman excitation of many rotational states manifests as revivals in the transient NLR, from which we identify N2, O2 and two isotopologues of CS2, and unambiguously determine the dephasing rate, and rotational and centrifugal constants of each constituent. Using the revival signal as a self-reference, ? is directly measured for CS2 molecules in gas phase, which coincides with the ? determined from liquid phase measurements when including the Lorentz-Lorenz local field correction. In semiconductors, the Kerr effect dominates the NLR in the sub-gap regime. Here, we primarily focus on investigating the dispersion of nondegenerate (ND) NLR, namely the refractive index change at frequency ?_a due to the presence of a beam at frequency ?_b. The magnitude and sign of the ND-NLR coefficient n_2 (?_a;?_b ) are determined for ZnO, ZnSe and CdS over a broad spectral range for different values of nondegeneracy, which closely follows our earlier predictions based on nonlinear Kramers-Kronig relations. In the extremely nondegenerate case, n_2 (?_a;?_b ) is positively enhanced near the two-photon absorption (2PA) edge, suggesting applications for nondegenerate all-optical switching. Additionally, n_2 (?_a;?_b ) exhibits a strong anomalous nonlinear dispersion within the ND-2PA spectral region, providing a large phase modulation of a femtosecond pulse with bandwidth centered near the zero-crossing frequency. Another subject of this dissertation is the characterization of a spiro-type two-photon photochromic molecule, in which Förster resonance energy transfer (FRET) is utilized to activate the ring-opening effect from a 2PA-donor chromophore. Evidence of energy transfer is observed via fluorescence measurements of the quantum yield, excitation spectra and anisotropy. The absorption and lifetime of the open form are measured in a dye-doped sol-gel matrix. Transient absorption measurements indicate both ring opening and closing occurs on a several picosecond time scale along with multiple transient photoproducts, from which a high FRET efficiency is measured in agreement with theoretical predictions. This efficient 2PA-FRET photochrome may be implemented into photonic devices such as optical memories. However, with a relatively small open-form absorption cross section and significant ring closing, the photochrome may not be viable for enhancing nonlinear absorption in applications such as optical limiting.
95

Monolithically Integrated InP-based Unidirectional Circulators Utilizing non-Hermiticity and Nonlinearity

Aleahmad, Parinaz 01 January 2016 (has links)
The need to integrate critical optical components on a single chip has been an ongoing quest in both optoelectronics and optical communication systems. Among the possible devices, elements supporting non-reciprocal transmission are of great interest for applications where signal routing and isolation is required. In this respect, breaking reciprocity is typically accomplished via Faraday rotation through appropriate magneto-optical arrangements. Unfortunately, standard light emitting optoelectronic materials like for example III-V semiconductors, lack magneto-optical properties and hence cannot be directly used in this capacity. To address these issues, a number of different tactics have been attempted in the last few years. These range from directly bonding garnets on chip, to parametric structures and unidirectional nonlinear arrangements involving ring resonators, to mention a few. Clearly, of importance will be to realize families of non-reciprocal devises that not only can be miniaturized and readily integrated on chip but they also rely on physical processes that are indigenous to the semiconductor wafer itself. Quite recently we have theoretically shown that such unidirectional systems can be implemented, provided one simultaneously exploits the presence of gain/loss processes and optical nonlinearities. In principle, these all-dielectric structures can be broadband, polarization insensitive, color-preserving, and can display appreciable isolation ratios provided they are used under pulsed conditions. In this study, we experimentally demonstrate a compact, monolithically integrated unidirectional 4×4 optical circulator, based on non-reciprocal optical transmission through successive amplification/attenuation stages and elements with very large resonance nonlinearities associated with InGaAsP quantum wells. Our results indicate that isolation ratios over 20dB can be experimentally achieved in pulse-mode operation. Our design can be effortlessly extended to other existing optoelectronic device systems beyond InP.
96

Fabrication and Characterization of Spatially-Variant Self-Collimating Photonic Crystals

Digaum, Jennefir 01 January 2016 (has links)
Spatially-variant photonic crystals (SVPCs) created using materials having a low refractive index are shown to be capable of abruptly controlling light beams with high polarization selectivity. SVPCs are photonic crystals for which the orientation of the unit cell is controllably varied throughout the lattice to control the flow of light. Multi-photon lithography in a photo polymer was used to fabricate three-dimensional SVPCs that direct the flow of light around a 90 degree bend. The optical performance of the SVPCs was characterized using a scanning optical-fiber system that introduced light onto the input face of a structure and measured the intensity of light emanating from the output faces. As a proof-of-concept, SVPCs that can bend a beam at a wavelength of ?0 = 2.94 ?m were fabricated in the photo-polymer SU-8. The SVPCs were shown to direct infrared light of one polarization through a sharp bend, while the other polarization propagated straight through the SVPC, when the volumetric fill-factor is near 50%. The peak-to-peak ratio of intensities of the bent- and straight-through beams was 8:1, and a power efficiency of 8% was achieved. The low efficiency is attributed to optical absorption in SU-8 at ?0 = 2.94 ?m. SVPCs that can bend a beam at telecommunications wavelengths near ?0 = 1.55 ?m were fabricated by multi-photon lithography in the photo-polymer IP-Dip. IP-Dip was chosen over SU 8 to enable fabrication of finer features, as are needed for an SVPC scaled in size to operate at shorter wavelengths. Experimental characterization shows that these particular SVPCs provide effective control of the vertically polarized beam at ?0 = 1.55 ?m, when the volumetric fill-factor is around 46%. The beam bending peak efficiency was found to be 52.5% with a peak-to-peak ratio between the bent- and straight-through beams of 78.7. Additionally, these SVPCs can bend a light beam with a broad bandwidth of 153 nm that encompasses both the C- and S-bands of the telecommunications window. Furthermore, the SVPCs have high tolerance to misalignment, in which an offset of the input beam by as much as 6 ?m causes the beam-bending efficiency to drop no more than 50%. Finally, it is shown that these particular SVPCs can bend beams without significantly distorting the mode profile. This work introduces a new scheme for controlling light that should be useful for integrated photonics. The penultimate chapter discusses nonlinear phenomena that were observed during the optical characterization of the SVPCs using a high peak-power amplified femtosecond laser system. The first of these effects is referred to as "super-collimation", in which the beam bending peak efficiency of certain SVPCs increases with input intensity, reaching as high as 68%. The second effect pertains to nonlinear imaging of light at ?0 = 1.55 ?m scattered from an SVPC and detected using a silicon-CCD camera. This effect enables beam bending within the device to be imaged in real time. The dissertation concludes with an outlook for SVPCs, discussing potential applications and challenges that must be addressed to advance their use in photonics.
97

Design and Verification of a Multi-Terawatt Ti-Sapphire Femtosecond Laser System

Roumayah, Patrick 01 January 2017 (has links)
Ultrashort pulse lasers are well-established in the scientific community due to the wide range of applications facilitated by their extreme intensities and broad bandwidth capabilities. This thesis will primarily present the design for the Mobile Ultrafast High Energy Laser Facility (MU-HELF) for use in outdoor atmospheric propagation experiments under development at the Laser Plasma Laboratory at UCF. The system is a 100fs 500 mJ Ti-Sapphire Chirped-Pulse Amplification (CPA) laser, operating at 10 Hz. Some background on the generation of very high intensity optical pulses is also presented, alongside an overview of the physics of filamentation. As part of the design of MU-HELF, this thesis focuses on a novel approach to manage the large amount of dispersion required to stretch the pulse for CPA utilizing a custom nonlinear chirped Volume Bragg Grating (VBG) as a pulse stretcher matched to a traditional Treacy compressor. As part of this thesis, the dispersion of the CPA system was thoroughly modeled to properly design the chirped VBG and fabricated VBGs were characterized using a scanning spectral interferometry technique. The work demonstrates the feasibility of using a compact monolithic pulse stretcher in terawatt class CPA lasers.
98

High Performance Liquid Crystals for Displays and Spatial Light Modulators

Peng, Fenglin 01 January 2017 (has links)
Liquid crystals (LCs) are an amazing class of soft materials which have been widely used in the visible, infrared (IR), millimeter wave, and terahertz spectral regions. Both amplitude modulation (e.g. displays) and phase modulation (e.g. spatial light modulators (SLMs) for adaptive optics and adaptive lens) have been investigated extensively. Thin-film-transistor liquid crystal displays (TFT-LCDs) have become ubiquitous in our daily lives. Its widespread applications span from TVs, monitors, tablets, smartphones, augmented reality, virtual reality, to vehicle displays. LCD shows advantages in 1) high resolution, 2) long lifetime, 3) vivid colors using quantum dots backlight, and 4) high dynamic contrast ratio employing local dimming technology. However, LCD exhibits a serious problem, which is slow response time. Therefore, it is commonly perceived that LCD exhibits a more severe image blur than organic light emitting diode (OLED) displays. Indeed, the response time of LCD is ~100x slower than that of OLED. To evaluate image blurs, Motion Picture Response Time (MPRT) has been proposed to quantify the visual performance of a moving object. MPRT is jointly governed by three factors: the sample and hold effect of an active matrix display, motion pursuing, and human vision system. It is a complicated problem and is difficult to obtain analytical solution. In this thesis, we analyze the sample-and-hold effects and derive a simple equation to correlate MPRT with LC response time, TFT frame rate, and duty ratio. From our analytical equation, we find that as long as an LCD's response time is less than 2 ms, its MPRT would be comparable to that of OLED at the same frame rate, even if the OLED's response time is assumed to be zero. To further reduce MPRT, we could boost the frame rate to 144 Hz or reduce the duty ratio through backlight modulation. This discovery sheds new physical insights for LCDs to achieve CRT-like displays with negligible image blurs. In addition to displays, LCs are widely employed in SLMs for modulating the phase and polarization of an incident light. This is because LCs possess high birefringence and relatively low absorption from the visible, IR, to terahertz regions. The useful applications include adaptive lens, adaptive optics, fiber-optic communication, antenna, and phase shifter. Fast response time is a common requirement for the abovementioned photonic devices. To achieve fast response time while maintaining 2-pi phase change, polymer-stabilized blue phase liquid crystal (BPLC) and polymer-network liquid crystal (PNLC) are promising candidates for the visible and IR SLMs, respectively. However, the operation voltage of present BPLC and PNLC devices is too high. To reduce operation voltage while keeping fast response time, we developed a new device configuration for BPLC SLM to work in the visible region. The new device structure allows the incident laser beam to traverse the BPLC layer four times before exiting the reflective SLM. As a result, the 2-pi phase change voltage is reduced to below 24V, which is the maximum attainable voltage for a high resolution liquid-crystal-on-silicon device. On the other hand, PNLC is a better candidate for the IR SLM because several high birefringence LC materials can be used. To reduce the operation voltage of a PNLC, we have investigated following three approaches: 1) developing large dielectric anisotropy and high birefringence (?n) LC materials, 2) optimizing polymer concentration, and 3) optimizing UV curing conditions. In the visible and near IR regions, most LCs are highly transparent. However, to extend the electro-optic application of LCs into MWIR and LWIR, absorption loss becomes a critical issue. In the MWIR region, several fundamental molecular vibration bands and overtones exist, which contribute to high absorption loss. The absorbed light turns to heat and then alters the birefringence locally, which in turns causes spatially non-uniform phase modulation. To suppress the optical loss, we have taken following approaches: (1) Designing high birefringence to minimize the LC layer thickness; (2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination, or chlorination; (3) Reducing the overtone absorption by using a short alkyl chain. As a result, we have developed several low loss and high birefringence chlorinated LCs for the first time. To achieve fast response time, we demonstrated a PNLC with 2-pi phase change at MWIR and response time less than 5 ms. Molecular tailoring strategies for extending liquid crystal SLM into long-wavelength infrared (LWIR) are also explored.
99

New Architectures for High Brightness Laser Emission: Thulium Lasers and Raman Lasers in Fiber and Diamond

Roumayah, Patrick 01 January 2020 (has links)
Thanks to their high beam quality, compactness, and simplicity, the development of ytterbium fiber lasers has dominated the field of Directed Energy (DE) and high brightness continuous wave (CW) lasers in general for the last 10 years. This work has produced many 10's of kilowatts diffraction limited emission by way of spectral or coherent beam combining of many individual channels. However, as the need arises for even higher power deployable systems, on the order of 100's of kilowatts, the appearance of the Transverse Mode Instability (TMI) appears to be a limiting factor. In addition, the danger to bystanders in the usually uncontrollable environment associated with directed energy demands considerations for eye-safety in any such system. In order to circumvent the apparent limitations for power scaling in ytterbium doped lasers, as well as to access the desirable retina-safe regime beyond 1.4 µm, new technology is needed. This dissertation focuses on three such technologies: thulium lasers, Raman fiber lasers, and diamond Raman lasers. Power scaling concepts for thulium doped fiber lasers are introduced, as they access the 2 µm transmission band in atmosphere and are expected to exhibit a much higher TMI threshold than ytterbium. A new architecture of thulium lasers is presented which facilitates novel laboratory studies on thermal blooming by precision wavelength tuning of a narrow linewidth 2 µm laser signal. These studies are expected to be critical in the eventual deployment of extremely high-power ytterbium and thulium based systems. Raman fiber lasers are explored in detail, as they both increase the range of available wavelengths and may surpass ytterbium in terms of ultimate power scalability. Several methods for defeating the ubiquitous brightness enhancement limitations in Raman fiber lasers are employed in graded-index fiber. In addition, a nearly diffraction limited cladding-pumped Raman laser is designed and executed with 10s of kW of peak power. Finally, a broad practical design space for Diamond Raman lasers (DRLs) is simulated. Though a free space laser source, DRLs have high diffraction limited scaling potential as the limitations posed by thermal lensing are lower for diamond than any other known material. With the potential to produce high energy in both the 1.24 µm and 1.5 µm transmission bands in compact and even portable systems, diamond is a promising path to entirely new regimes in laser science. The current scaling efforts in pulsed and CW diamond Raman lasers are introduced, along with a detailed model on a diamond Raman amplifier configuration.
100

Ultrafast High-energy Laser Systems for Filament Applications

Thul, Daniel 01 January 2020 (has links)
The invention and rapid improvement of ultrafast laser technology has enabled several new fields of nonlinear optics and high-intensity laser physics. One area that has received much attention is laser filamentation due to its complex set of underlying nonlinear physics. This dissertation explores the utility of laser filaments by first providing insight into their fundamental characteristics. This is followed by demonstrations of high-energy laser systems that support studies of ultrafast applications in field settings and in new spectral regimes. Initial fundamental studies describe filament wavefront evolution during formation and propagation. These spatially resolved measurements yield new insights into the spatial core-reservoir structure present in fully-formed filaments and the competing optical nonlinearities present during filament collapse and formation. These results inform applications based on multi-filament interaction including nonlinear filament combination and engineered filament arrays. Filament applications are pursued through the activation of the Mobile Ultrafast High-Energy Laser Facility (MU-HELF), a field-deployed system suitable for studying filamentation at the kilometer range in atmospheric conditions. The initial studies supported using the MU-HELF demonstrate the ability to characterize high-energy, multi-filament beams along kilometer paths and correlate these measurements with local metrological effects. This work has also led to the first demonstration of engineered filament arrays at 1 kilometer. A second compact ultrafast laser system based on high-pressure CO2 amplifier technology was deployed alongside the MU-HELF to study ultrafast effects in the long-wave infrared (LWIR). This system enables parallel studies of filamentation in a new spectral regime where filament properties are widely unknown and expected to provide advantages over their near infrared counterparts. Additional LWIR applications are supported including double-resonance spectroscopy, a molecular detection technique capable of providing enhanced molecular discrimination over single-resonant methods at distances and pressures of practical interest.

Page generated in 0.0467 seconds