Spelling suggestions: "subject:"0ptimal control"" "subject:"aptimal control""
131 |
Approximate Solution Methods to Optimal Control Problems via Dynamic Programming ModelsLi, Yuchao January 2021 (has links)
Optimal control theory has a long history and broad applications. Motivated by the goal of obtaining insights through unification and taking advantage of the abundant capability to generate data, this thesis introduces some suboptimal schemes via abstract dynamic programming models. As our first contribution, we consider deterministic infinite horizon optimal control problems with nonnegative stage costs. We draw inspiration from the learning model predictive control scheme designed for continuous dynamics and iterative tasks, and propose a rollout algorithm that relies on sampled data generated by some base policy. The proposed algorithm is based on value and policy iteration ideas. It applies to deterministic problems with arbitrary state and control spaces, and arbitrary dynamics. It admits extensions to problems with trajectory constraints, and a multiagent structure. In addition, abstract dynamic programming models are used to analyze $\lambda$-policy iteration with randomization algorithms. In particular, we consider contractive models with infinite policies. We show that well-posedness of the $\lambda$-operator plays a central role in the algorithm. The operator is known to be well-posed for problems with finite states, but our analysis shows that it is also well-defined for the contractive models with infinite states. Similarly, the algorithm we analyze is known to converge for problems with finite policies, but we identify the conditions required to guarantee convergence with probability one when the policy space is infinite regardless of the number of states. Guided by the analysis, we exemplify a data-driven approximated implementation of the algorithm for estimation of optimal costs of constrained linear and nonlinear control problems. Numerical results indicate the potentials of this method in practice. / Teorin om optimal reglering har en lång historia och breda tillämpningsområden.I denna avhandling, som motiveras av att få insikter genom att förena och dra nyttaav den goda möjligheten att generera data, introduceras några suboptimala systemvia abstrakta modeller för dynamisk programmering.I vårt första bidrag betraktar vi ett deterministiskt optimalt regleringsproblemmed oändlig horisont och icke-negativa stegkostnader. Vi hämtar inspiration frånmodellprediktiv reglering med inlärning, som är utformad för system med kontinuerligdynamik och iterativa uppgifter, och föreslår en utrullningsalgoritm som bygger påsamplade data som genereras av en viss baspolicy. Den föreslagna algoritmen byggerpå idéer om värde- och policyiteration. Den är tillämpningsbar för deterministiskaproblem med godtyckliga tillstånds- och kontrollrum samt för system med godtyckligdynamik. Slutligen kan den utvidgas till problem med trajektoriebegränsningar ochen struktur med flera agenter.Dessutom används abstrakta modeller för dynamisk programmering för attanalysera lambdapolicyiteration med randomiseringsalgoritmer. Vi betraktar merspecifikt kontraktiva modeller med oändliga strategier. Vi visar att lambdaoperatorns välbestämdhet spelar en central roll i algoritmen. Det är känt att operatorn ärväldefinierad för problem med ändliga tillstånd, men vår analys visar att den ocksåär väldefinierad för de studerade kontraktiva modellerna med oändliga tillstånd.På samma sätt är det känt att den algoritm vi analyserar konvergerar för problemmed ändliga strategier, men vi identifierar de villkor som krävs för att garanterakonvergens med sannolikhet ett när policyrummet är oändligt, oberoende av antalettillstånd. Med hjälp av analysen exemplifierar vi en datadriven approximativ implementering av algoritmen för uppskattning av optimala kostnader för begränsadelinjära och icke-linjära regleringsproblem. Numeriska resultat visar på potentialen iatt använda denna metod i praktiken. / <p>QC 20211129</p>
|
132 |
Inverse Optimal Control : theoretical study / Contrôle Optimal Inverse : étude théoriqueMaslovskaya, Sofya 11 October 2018 (has links)
Cette thèse s'insère dans un projet plus vaste, dont le but est de s'attaquer aux fondements mathématiques du problème inverse en contrôle optimal afin de dégager une méthodologie générale utilisable en neurophysiologie. Les deux questions essentielles sont : (a) l'unicité d'un coût pour une synthèse optimale donnée (injectivité); (b) la reconstruction du coût à partir de la synthèse. Pour des classes de coût générales, le problème apparaît très difficile même avec une dynamique triviale. On a donc attaqué l'injectivité pour des classes de problèmes spéciales : avec un coût quadratique, la dynamique étant soit non-holonome, soit affine en le contrôle. Les résultats obtenus ont permis de traiter la reconstruction pour le problème linéaire-quadratique. / This PhD thesis is part of a larger project, whose aim is to address the mathematical foundations of the inverse problem in optimal control in order to reach a general methodology usable in neurophysiology. The two key questions are : (a) the uniqueness of a cost for a given optimal synthesis (injectivity) ; (b) the reconstruction of the cost from the synthesis. For general classes of costs, the problem seems very difficult even with a trivial dynamics. Therefore, the injectivity question was treated for special classes of problems, namely, the problems with quadratic cost and a dynamics, which is either non-holonomic (sub-Riemannian geometry) or control-affine. Based on the obtained results, we propose a reconstruction algorithm for the linear-quadratic problem.
|
133 |
Development of a Robust and Tunable Aircraft Guidance AlgorithmSpangenberg, Jacob R. January 2021 (has links)
No description available.
|
134 |
Optimal Control and Reinforcement Learning of Switched SystemsChen, Hua January 2018 (has links)
No description available.
|
135 |
Solving a Single-Pursuer, Dual-Evader Pursuit-Evasion Differential Game and Analogous Optimal Control ProblemsSwanson, Brian A. 05 October 2020 (has links)
No description available.
|
136 |
Integrated Optimal and Robust Control of Spacecraft in Proximity OperationsPan, Hejia 09 December 2011 (has links)
With the rapid growth of space activities and advancement of aerospace science and technology, many autonomous space missions have been proliferating in recent decades. Control of spacecraft in proximity operations is of great importance to accomplish these missions. The research in this dissertation aims to provide a precise, efficient, optimal, and robust controller to ensure successful spacecraft proximity operations. This is a challenging control task since the problem involves highly nonlinear dynamics including translational motion, rotational motion, and flexible structure deformation and vibration. In addition, uncertainties in the system modeling parameters and disturbances make the precise control more difficult. Four control design approaches are integrated to solve this challenging problem. The first approach is to consider the spacecraft rigid body translational and rotational dynamics together with the flexible motion in one unified optimal control framework so that the overall system performance and constraints can be addressed in one optimization process. The second approach is to formulate the robust control objectives into the optimal control cost function and prove the equivalency between the robust stabilization problem and the transformed optimal control problem. The third approach is to employ the è-D technique, a novel optimal control method that is based on a perturbation solution to the Hamilton-Jacobi-Bellman equation, to solve the nonlinear optimal control problem obtained from the indirect robust control formulation. The resultant optimal control law can be obtained in closedorm, and thus facilitates the onboard implementation. The integration of these three approaches is called the integrated indirect robust control scheme. The fourth approach is to use the inverse optimal adaptive control method combined with the indirect robust control scheme to alleviate the conservativeness of the indirect robust control scheme by using online parameter estimation such that adaptive, robust, and optimal properties can all be achieved. To show the effectiveness of the proposed control approaches, six degree-offreedom spacecraft proximity operation simulation is conducted and demonstrates satisfying performance under various uncertainties and disturbances.
|
137 |
Optimal Control of Production for a Supply Chain System with Time-Varying Demand and Flexible Production CapacitiesFang, Yunmei January 2008 (has links)
No description available.
|
138 |
Scalable Decision-Making for Autonomous Systems in Space MissionsWan, Changhuang January 2021 (has links)
No description available.
|
139 |
Wavelet methods for solving fractional-order dynamical systemsRabiei, Kobra 13 May 2022 (has links)
In this dissertation we focus on fractional-order dynamical systems and classify these problems as optimal control of system described by fractional derivative, fractional-order nonlinear differential equations, optimal control of systems described by variable-order differential equations and delay fractional optimal control problems. These problems are solved by using the spectral method and reducing the problem to a system of algebraic equations. In fact for the optimal control problems described by fractional and variable-order equations, the variables are approximated by chosen wavelets with unknown coefficients in the constraint equations, performance index and conditions. Thus, a fractional optimal control problem is converted to an optimization problem, which can be solved numerically. We have applied the new generalized wavelets to approximate the fractional-order nonlinear differential equations such as Riccati and Bagley-Torvik equations. Then, the solution of this kind of problem is found using the collocation method. For solving the fractional optimal control described by fractional delay system, a new set of hybrid functions have been constructed. Also, a general and exact formulation for the fractional-order integral operator of these functions has been achieved. Then we utilized it to solve delay fractional optimal control problems directly. The convergence of the present method is discussed. For all cases, some numerical examples are presented and compared with the existing results, which show the efficiency and accuracy of the present method.
|
140 |
Fast Model Predictive Control of Robotic Systems with Rigid Contacts / 接触を伴うロボットの高速なモデル予測制御Katayama, Sotaro 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24266号 / 情博第810号 / 新制||情||136(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 大塚 敏之, 教授 石井 信, 教授 森本 淳 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
Page generated in 0.0776 seconds