Spelling suggestions: "subject:"0ptimal control. eng"" "subject:"aptimal control. eng""
1 |
Existência de soluções de inclusões diferenciais em escalas temporais :Santos, Iguer Luis Domini dos. January 2011 (has links)
Orientador: Geraldo Nunes Silva / Banca: Valeriano Antunes de Oliveira / Banca: Antônio Carlos Gardel Leitão / Banca: Laécio Carvalho de Barros / Banca: Márcia Cristina A. B. Federson / Resumo: Consideramos nesta tese inclusões dinâmicas vetoriais em escalas de tempo e estendemos para esta classe o resultado de compacidade das trajetórias que, p or sua vez, foi combinado com soluções de Euler, tamb ém intro duzidas nesta tese, para garantir a existência de trajetória qua ndo o camp o vetorial da inclusão dinâmica é semicontínuo sup erior. Porém, quando o camp o vetorial da inclusão dinâmica é semicontínuo inferior, é possível obter uma solução da inclusão dinâmica por meio de uma equação dinâmica cujo campo vetorial é contí nuo. Este campo é um a seleção da multifunção que de ne o camp o vetorial. Consideramos também um problema de controle ó ti mo e mostramos que este possui tra jetória admissível ótima sempre que o conjunto de soluções admissíveis é não-vazio e o campo satisfaz as condições de mensurabilidade, convexidade, compacidade e crescimento linear. Além disso, estendemos o Lema de Filippov para a classe de inclusões dinâmicas para mostrar que é possível fazer uma equivalência total do problema de controle no paradigma de inclusão dinâmica com o problema de controle padrão / Abstract: We consider in this t hes is vectors dynamic inclusions on time scales and extended for this class the result of compactness of the trajectories which, in turn, was combined with Euler solutions, also introduced i n this thesis, t o ensure t he existence of trajectory when the vector eld of t he dynamic inclusi on is upper semicontinuous. However, when the vector eld of the dynamic inclusion is lower semicontinuous, it is possible to obtain a solution of the dynamic inclusion through a dynamic equation whose vector eld is continuous. This eld is a selection of the multifunction de ning the vector eld. We also consider an optimal control problem and we showed that it has an optimal admissible trajectory whenever the admissible solutions set is nonempty and the eld sati s es measurability conditions, conve-xity, compactness and linear growth. Furthermore, we extend the Filippov's Lemma for the class of dynamic inclusions to show that it is possible to do a ful l equivalence of the control problem in the paradigm of dynamic inclusion with the standard control problem / Doutor
|
2 |
Análise não-diferenciável e condições necessárias de otimalidade para problema de controle ótimo com restrições mistas /Izelli, Reginaldo César. January 2006 (has links)
Orientador: Geraldo Nunes Silva / Banca: Vilma Alves de Oliveira / Banca: Masayoshi Tsuchida / Resumo: Estamos interessados em estudar uma generalização do Princípio do Máximo de Pontryagin para problema de controle ótimo com restrições mistas envolvendo funções nãodiferenciáveis, pois este princípio não se aplica para todos os tipos de problemas. O principal objetivo deste trabalho é apresentar as condições necessárias de otimalidade na forma do princípio do máximo que serão aplicadas para o problema de controle ótimo com restrições mistas envolvendo funções não-diferenciáveis. Para alcançar este objetivo apresentamos estudos sobre cones normais e cones tangentes os quais são utilizados no desenvolvimento da teoria de subdiferenciais. Após esse embasamento formulamos o problema de controle ótimo envolvendo funções não-diferenciáveis, e apresentamos as condições necessárias de otimalidade. / Abstract: We are interested in study a generalization of the Pontryagin Maximum Principle for optimal control problems with mixed constraints involving nondi erentiable functions, because this principle can not be applied for all the types of problems. The main objective of this work is to present the necessary conditions of optimality in the form of the maximum principle that will be applied for the optimal control problem with mixed constraints involving nondi erentiable functions. To achieve this objective we present studies above normal cones and tangent cones which are used in the development of the theory of subdi erentials. After this foundation we formulate the optimal control problem involving nondi erentiable functions, and we present the necessary conditions of optimality. / Mestre
|
Page generated in 0.1056 seconds