Spelling suggestions: "subject:"0ptimal packing"" "subject:"aptimal packing""
1 |
A Numerical Study of Pattern Forming Fronts in PhyllotaxisPennybacker, Matthew January 2013 (has links)
Using a partial differential equation model derived from the ideas of the Meyerowitz and Traas groups on the role of the growth hormone auxin and those of Green and his group on the role compressive stresses can play in plants, we demonstrate how all features of spiral phyllotaxis can be recovered by the passage of a pushed pattern forming front. The front is generated primarily by a PIN1 mediated instability of a uniform auxin concentration and leaves in its wake an auxin fluctuation field at whose maxima new primordia are assumed to be initiated. Because it propagates through a slowly changing metric, the patterns have to make transitions between spirals enumerated by decreasing parastichy numbers. The point configurations of maxima coincide almost exactly with those configurations generated by the use of discrete algorithms based on optimal packing ideas which suggests that pushed pattern forming fronts may be a general mechanism by which natural organisms can follow optimal strategies. We also describe in detail a numerical method that is used to efficiently and accurately integrate the model equations while preserving the variational structure from which they are derived.
|
2 |
Geometric optimization for the maximum heat transfer density rate from cylinders rotating in natural convectionPage, L.G. (Logan Garrick) 25 June 2012 (has links)
In this study we investigates the thermal behavior of an assembly of consecutive cylinders in a counter-rotating configuration cooled by natural convection with the objective of maximizing the heat transfer density rate (heat transfer rate per unit volume). A numerical model was used to solve the governing equations that describe the temperature and flow fields and an optimization algorithm was used to find the optimal structure for flow configurations with two or more degrees of freedom. The geometric structure of the consecutive cylinders was optimized for each flow regime (Rayleigh number) and cylinder rotation speed for one and two degrees of freedom. Smaller cylinders were placed at the entrance to the assembly, in the wedge-shaped flow regions occupied by fluid that had not yet been used for heat transfer, to create additional length scales to the flow configuration. It was found that the optimized spacing decreases and the heat transfer density rate increases as the Rayleigh number increases, for the optimized structure. It was also found that the optimized spacing decreases and the maximum heat transfer density rate increases, as the cylinder rotation speed was increased for the single scale configuration at each Rayleigh number. Results further showed that there was an increase in the heat transfer density rate of the rotating cylinders over stationary cylinders for a single scale configuration. For a multi scale configuration it was found that there was almost no effect of cylinder rotation on the maximum heat transfer density rate, when compared to stationary cylinders, at each Rayleigh number; with the exception of high cylinder rotation speeds, which serve to suppress the heat transfer density rate. It was, however, found that the optimized spacing decreases as the cylinder rotation speed was increased at each Rayleigh number. Results further showed that the maximum heat transfer density rate for a multi scale configuration (with stationary cylinders) was higher than a single scale configuration (with rotating cylinders) with an exception at very low Rayleigh numbers. / Dissertation (MEng)--University of Pretoria, 2012. / Mechanical and Aeronautical Engineering / unrestricted
|
3 |
Vliv jemnozrnných příměsí na charakter pórového systému betonu / The Influence of Fines on Pore System of ConcreteElfmarková, Veronika January 2013 (has links)
Literature does not provide a satisfactory answer to maximum and minimum particle size or the particle size of the mortar phase especially for optimal porosity of concrete. To overcome the shortcomings of the design methods were thought to design a new method for design of concrete mix. This idea is based on a complex analysis of powder materials (determination of granular properties, shape factor of fillers, porosity, packing of powder materials, surface area, etc.) and subsequently to assess the influence to pore system of concrete and physical and mechanical properties in hardened state of concrete. In this work are presented and analyzed two types of fillers – fly ash and limestone dust.
|
Page generated in 0.0693 seconds