• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of field pea (<i>Pisum sativum </i> L.) basal branching on optimal plant density and crop competitiveness

Spies, Joshua Michael 09 April 2008
Field pea is an important crop in western Canada. The current recommended seeding rate in field pea is 88 plants m-2. As certain pea genotypes have the ability for increased branching, it may be possible for a producer to seed at a lower plant population without reduced yield or to choose a highly branched cultivar to have reduced risk of yield loss under conditions of poor emergence. The objective of this research was to determine how differences in branching among seven representative pea cultivars affected crop yield at different seeding rates, and to determine if branching affected the competitive ability of pea cultivars. In the plant population experiment, seven pea cultivars were seeded at five target plant populations (10, 30, 90, 120, and 150 plant m-2) during 2005 and 2006 at Rosthern and Saskatoon, Saskatchewan. The competition experiment involved eight cultivars being seeded at 50 plants m-2 to measure competitiveness with weeds. Plant emergence, number of branches, light interception, harvest index and grain yield were measured. Growth, seasonal temperature and rainfall were near normal in 2005. Severe terminal drought occurred in 2006 which may have lead to decreased yields. Branching was greatest at low plant densities and decreased as plant density increased. Grain yield increased as plant density increased until it plateaued at 80 100 plants m-2. The response of yield to plant density differed to some extent among cultivars, with CDC Acer and CDC Bronco achieving more of their potential yield at lower densities, while Carrera and Courier required higher densities to reach the same proportion of potential yield. Weed biomass was lowest in plots sown to longer vined cultivars with normal leaf type. Branching habit did not affect the competitiveness of pea cultivars. Potential exists to plant highly branched cultivars to reduce risk of yield loss in situations where low plant emergence might occur.
2

The effect of field pea (<i>Pisum sativum </i> L.) basal branching on optimal plant density and crop competitiveness

Spies, Joshua Michael 09 April 2008 (has links)
Field pea is an important crop in western Canada. The current recommended seeding rate in field pea is 88 plants m-2. As certain pea genotypes have the ability for increased branching, it may be possible for a producer to seed at a lower plant population without reduced yield or to choose a highly branched cultivar to have reduced risk of yield loss under conditions of poor emergence. The objective of this research was to determine how differences in branching among seven representative pea cultivars affected crop yield at different seeding rates, and to determine if branching affected the competitive ability of pea cultivars. In the plant population experiment, seven pea cultivars were seeded at five target plant populations (10, 30, 90, 120, and 150 plant m-2) during 2005 and 2006 at Rosthern and Saskatoon, Saskatchewan. The competition experiment involved eight cultivars being seeded at 50 plants m-2 to measure competitiveness with weeds. Plant emergence, number of branches, light interception, harvest index and grain yield were measured. Growth, seasonal temperature and rainfall were near normal in 2005. Severe terminal drought occurred in 2006 which may have lead to decreased yields. Branching was greatest at low plant densities and decreased as plant density increased. Grain yield increased as plant density increased until it plateaued at 80 100 plants m-2. The response of yield to plant density differed to some extent among cultivars, with CDC Acer and CDC Bronco achieving more of their potential yield at lower densities, while Carrera and Courier required higher densities to reach the same proportion of potential yield. Weed biomass was lowest in plots sown to longer vined cultivars with normal leaf type. Branching habit did not affect the competitiveness of pea cultivars. Potential exists to plant highly branched cultivars to reduce risk of yield loss in situations where low plant emergence might occur.

Page generated in 0.0864 seconds