• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Introduction of statistics in optimization / Introduction de statistiques en optimisation

Teytaud, Fabien 08 December 2011 (has links)
Cette thèse se situe dans le contexte de l'optimisation. Deux grandes parties s'en dégagent ; la première concerne l'utilisation d'algorithmes évolutionnaires pour résoudre des problèmes d'optimisation continue et sans dérivées. La seconde partie concerne l'optimisation de séquences de décisions dans un environnement discret et à horizon fini en utilisant des méthodes de type Monte-Carlo Tree Search. Dans le cadre de l'optimisation évolutionnaire, nous nous intéressons particulièrement au cadre parallèle à grand nombre d'unités de calcul. Après avoir présenté les algorithmes de référence du domaine, nous montrons que ces algorithmes, sous leur forme classique, ne sont pas adaptés à ce cadre parallèle et sont loin d'atteindre les vitesses de convergence théoriques. Nous proposons donc ensuite différentes règles (comme la modification du taux de sélection des individus ainsi que la décroissance plus rapide du pas) afin de corriger et améliorer ces algorithmes. Nous faisons un comparatif empirique de ces règles appliquées à certains algorithmes. Dans le cadre de l'optimisation de séquences de décisions, nous présentons d'abord les algorithmes de référence dans ce domaine (Min-Max, Alpha-Beta, Monte-carlo Tree Search, Nested Monte-Carlo). Nous montrons ensuite la généricité de l'algorithme Monte-Carlo Tree Search en l'appliquant avec succès au jeu de Havannah. Cette application a été un réel succès puisqu'aujourd'hui les meilleurs joueurs artificiels au jeu de Havannah utilisent cet algorithme et non plus des algorithmes de type Min-Max ou Alpha-Beta. Ensuite, nous nous sommes particulièrement intéressés à l'amélioration de la politique Monte-Carlo de ces algorithmes. Nous proposons trois améliorations, chacune étant générique. Des expériences sont faites pour mesurer l'impact de ces améliorations, ainsi que la généricité de l'une d'entre elles. Nous montrons à travers ces expériences que les résultats sont positifs. / In this thesis we study two optimization fields. In a first part, we study the use of evolutionary algorithms for solving derivative-free optimization problems in continuous space. In a second part we are interested in multistage optimization. In that case, we have to make decisions in a discrete environment with finite horizon and a large number of states. In this part we use in particular Monte-Carlo Tree Search algorithms. In the first part, we work on evolutionary algorithms in a parallel context, when a large number of processors are available. We start by presenting some state of the art evolutionary algorithms, and then, show that these algorithms are not well designed for parallel optimization. Because these algorithms are population based, they should be we well suitable for parallelization, but the experiments show that the results are far from the theoretical bounds. In order to solve this discrepancy, we propose some rules (such as a new selection ratio or a faster decrease of the step-size) to improve the evolutionary algorithms. Experiments are done on some evolutionary algorithms and show that these algorithms reach the theoretical speedup with the help of these new rules.Concerning the work on multistage optimization, we start by presenting some of the state of the art algorithms (Min-Max, Alpha-Beta, Monte-Carlo Tree Search, Nested Monte-Carlo). After that, we show the generality of the Monte-Carlo Tree Search algorithm by successfully applying it to the game of Havannah. The application has been a real success, because today, every Havannah program uses Monte-Carlo Tree Search algorithms instead of the classical Alpha-Beta. Next, we study more precisely the Monte-Carlo part of the Monte-Carlo Tree Search algorithm. 3 generic rules are proposed in order to improve this Monte-Carlo policy. Experiments are done in order to show the efficiency of these rules.
2

Knowledge-based configuration : a contribution to generic modeling, evaluation and evolutionary optimization / Configuration à base de connaissances : une contribution à la modélisation générique, à l'évaluation et à l'optimisation évolutionnaire

Garcés Monge, Luis 11 October 2019 (has links)
Dans un contexte de personnalisation de masse, la configuration concourante du produit et de son processus d’obtention constituent un défi industriel important : de nombreuses options ou alternatives, de nombreux liens ou contraintes et un besoin d’optimisation des choix réalisés doivent être pris en compte. Ce problème est intitulé O-CPPC (Optimization of Concurrent Product and Process Configuration). Nous considérons ce problème comme un CSP (Constraints Satisfaction Problem) et l’optimisons avec des algorithmes évolutionnaires. Un état de l’art fait apparaître : i) que la plupart des travaux de recherche sont illustrés sur des exemples spécifiques à un cas industriel ou académique et peu représentatifs de la diversité existante ; ii) un besoin d’amélioration des performances d’optimisation afin de gagner en interactivité et faire face à des problèmes de taille plus conséquente. En réponse au premier point, ces travaux de thèse proposent les briques d’un modèle générique du problème O-CPPC. Ces briques permettent d’architecturer le produit et son processus d’obtention. Ce modèle générique est utilisé pour générer un benchmark réaliste pour évaluer les algorithmes d’optimisation. Ce benchmark est ensuite utilisé pour analyser la performance de l’approche évolutionnaire CFB-EA. L’une des forces de cette approche est de proposer rapidement un front de Pareto proche de l’optimum. Pour répondre au second point, une amélioration de cette méthode est proposée puis évaluée. L’idée est, à partir d’un premier front de Pareto approximatif déterminé très rapidement, de demander à l’utilisateur de choisir une zone d’intérêt et de restreindre la recherche de solutions uniquement sur cette zone. Cette amélioration entraine des gains de temps de calcul importants. / In a context of mass customization, the concurrent configuration of the product and its production process constitute an important industrial challenge: Numerous options or alternatives, numerous links or constraints and a need to optimize the choices made. This problem is called O-CPPC (Optimization of Concurrent Product and Process Configuration). We consider this problem as a CSP (Constraints Satisfaction Problem) and optimize it with evolutionary algorithms. A state of the art shows that: i) most studies are illustrated with examples specific to an industrial or academic case and not representative of the existing diversity; ii) a need to improve optimization performance in order to gain interactivity and face larger problems. In response to the first point, this thesis proposes a generic model of the O-CPPC problem. This generic model is used to generate a realistic benchmark for evaluating optimization algorithms. This benchmark is then used to analyze the performance of the CFB-EA evolutionary approach. One of the strengths of this approach is to quickly propose a Pareto front near the optimum. To answer the second point, an improvement of this method is proposed and evaluated. The idea is, from a first approximate Pareto front, to ask the user to choose an area of interest and to restrict the search for solutions only on this area. This improvement results in significant computing time savings.
3

Contribution à la conception, par validation numérique et expérimentale, et l’optimisation pour l’aéronautique de contacteur hybride haute tension DC / Contribution to the design, by numerical and experimental validation, and optimization for aeronautics of DC high-voltage hybrid contactor

Buffo, Marc 22 February 2018 (has links)
Le concept de l'avion plus électrique a pour but de remplacer les différents types de transmissions de puissance aéronautique par des transmissions électriques. Le réseau électrique doit donc évoluer. Ce concept a inspiré le projet AEROCOTS dont une partie est la modification du moyen de coupure en un contacteur hybridé avec un circuit électrique. Afin de mieux comprendre ce qui se passe aux bornes du contacteur et vérifier qu'il n'y a pas apparition d'arc électrique, une méthode de caractérisation est employée pour obtenir un modèle complet du contacteur paramétré. Deux circuits électriques sont étudiés et l'absence d'un arc est vérifiée. Leur principe est de réduire à zéro le courant avant l'ouverture du contacteur. Leurs fonctionnements et leurs modèles sont vérifiés expérimentalement. Le choix du second circuit est justifié par un contrôle du courant à ouvrir. Une optimisation évolutionnaire, principe de la théorie de Darwin, est réalisée pour répondre aux objectifs aéronautiques / The main goal of the more electrical aircraft is to substitute the different kind of transmission for the aeronautical power by electrical transmissions. The electric network has to evolve. This concept inspires the project AEROCOTS, which a part lies in the modification of the breaking means thanks to a hybrid contactor with an electrical circuit. To better understand what occurs between the contacts of the contactor and verified the absence of an electrical arc, a characterization method is employed to have a complete parameterized model of a contactor. Two electrical circuits are studied and the absence of an arc is verified. Their principle is to reduce to zero the current before the opening of the contactor. Their functioning and their models are experimentally verified. The choice of the second circuit is justified by a control of the opening current. An evolutionary algorithm, principle of the Darwin's theory, is realized to answer to the aeronautical objectives
4

Optimization and uncertainty handling in air traffic management / Optimisation et gestion de l'incertitude du trafic aérien

Marceau Caron, Gaetan 22 September 2014 (has links)
Cette thèse traite de la gestion du trafic aérien et plus précisément, de l’optimisation globale des plans de vol déposés par les compagnies aériennes sous contrainte du respect de la capacité de l’espace aérien. Une composante importante de ce travail concerne la gestion de l’incertitude entourant les trajectoires des aéronefs. Dans la première partie du travail, nous identifions les principales causes d’incertitude au niveau de la prédiction de trajectoires. Celle-ci est la composante essentielle à l’automatisation des systèmes de gestion du trafic aérien. Nous étudions donc le problème du réglage automatique et en-ligne des paramètres de la prédiction de trajectoires au cours de la phase de montée avec l’algorithme d’optimisation CMA-ES. La principale conclusion, corroborée par d’autres travaux de la littérature, implique que la prédiction de trajectoires des centres de contrôle n’est pas suffisamment précise aujourd’hui pour supporter l’automatisation complète des tâches critiques. Ainsi, un système d’optimisation centralisé de la gestion du traficaérien doit prendre en compte le facteur humain et l’incertitude de façon générale.Par conséquent, la seconde partie traite du développement des modèles et des algorithmes dans une perspective globale. De plus, nous décrivons un modèle stochastique qui capture les incertitudes sur les temps de passage sur des balises de survol pour chaque trajectoire. Ceci nous permet d’inférer l’incertitude engendrée sur l’occupation des secteurs de contrôle par les aéronefs à tout moment.Dans la troisième partie, nous formulons une variante du problème classique du Air Traffic Flow and Capacity Management au cours de la phase tactique. L’intérêt est de renforcer les échanges d’information entre le gestionnaire du réseau et les contrôleurs aériens. Nous définissons donc un problème d’optimisation dont l’objectif est de minimiser conjointement les coûts de retard et de congestion tout en respectant les contraintes de séquencement au cours des phases de décollage et d’attérissage. Pour combattre le nombre de dimensions élevé de ce problème, nous choisissons un algorithme évolutionnaire multiobjectif avec une représentation indirecte du problème en se basant sur des ordonnanceurs gloutons. Enfin, nous étudions les performances et la robustesse de cette approche en utilisant le modèle stochastique défini précédemment. Ce travail est validé à l’aide de problèmes réels obtenus du Central Flow Management Unit en Europe, que l’on a aussi densifiés artificiellement. / In this thesis, we investigate the issue of optimizing the aircraft operators' demand with the airspace capacity by taking into account uncertainty in air traffic management. In the first part of the work, we identify the main causes of uncertainty of the trajectory prediction (TP), the core component underlying automation in ATM systems. We study the problem of online parameter-tuning of the TP during the climbing phase with the optimization algorithm CMA-ES. The main conclusion, corroborated by other works in the literature, is that ground TP is not sufficiently accurate nowadays to support fully automated safety-critical applications. Hence, with the current data sharing limitations, any centralized optimization system in Air Traffic Control should consider the human-in-the-loop factor, as well as other uncertainties. Consequently, in the second part of the thesis, we develop models and algorithms from a network global perspective and we describe a generic uncertainty model that captures flight trajectories uncertainties and infer their impact on the occupancy count of the Air Traffic Control sectors. This usual indicator quantifies coarsely the complexity managed by air traffic controllers in terms of number of flights. In the third part of the thesis, we formulate a variant of the Air Traffic Flow and Capacity Management problem in the tactical phase for bridging the gap between the network manager and air traffic controllers. The optimization problem consists in minimizing jointly the cost of delays and the cost of congestion while meeting sequencing constraints. In order to cope with the high dimensionality of the problem, evolutionary multi-objective optimization algorithms are used with an indirect representation and some greedy schedulers to optimize flight plans. An additional uncertainty model is added on top of the network model, allowing us to study the performances and the robustness of the proposed optimization algorithm when facing noisy context. We validate our approach on real-world and artificially densified instances obtained from the Central Flow Management Unit in Europe.

Page generated in 0.1259 seconds