• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Évaluation de la performance des règles de gestion d'un réservoir de production hydroélectrique mises à jour à l'aide de la programmation dynamique stochastique et d'un modèle hydrologique

Martin, Alexandre January 2016 (has links)
L’entreprise Rio Tinto effectue la gestion du système hydrique de la rivière Nechako, situé en Colombie-Britannique (Canada), à partir de règles de gestion optimisées à l’aide d’un algorithme de programmation dynamique stochastique (PDS) et de scénarios d’apports historiques. Les récents développements en recherche opérationnelle tendent à démontrer que la mise à jour des règles de gestion en mode prévisionnel permet d’améliorer la performance des règles de gestion lorsque des prévisions d’ensemble sont utilisées pour mieux cerner les incertitudes associées aux apports à venir. La modélisation hydrologique permet de suivre l’évolution d’un ensemble de processus hydrologiques qui varient dans le temps et dans l’espace (réserve de neige, humidité du sol, etc.). L’utilisation de modèles hydrologiques, en plus d’offrir la possibilité de construire des prévisions d’ensemble qui tiennent compte de l’ensemble des processus simulés, permet de suivre l’évolution de variables d’état qui peuvent être utilisées à même l’algorithme d’optimisation pour construire les probabilités de transition utiles à l’évaluation de la valeur des décisions futures. À partir d’un banc d’essais numériques dans lequel le comportement du bassin versant de la rivière Nechako est simulé à l’aide du modèle hydrologique CEQUEAU, les résultats du présent projet démontrent que la mise à jour des règles avec l’algorithme de PDS en mode prévisionnel permet une amélioration de la gestion du réservoir Nechako lorsque comparée aux règles optimisées avec l’algorithme en mode historique. Le mode prévisionnel utilisant une variable hydrologique combinant un modèle autorégressif d’ordre 5 (AR5) et la valeur maximale de l’équivalent en eau de la neige (ÉENM) a permis de réduire les déversements non-productifs et les inondations tout en maintenant des productions similaires à celles obtenues à l’aide de règles optimisées en mode historique utilisant l’ÉENM comme variable hydrologique. De plus, les résultats du projet démontrent que l’utilisation de prévisions hydrologiques d’ensemble en mode historique pour construire une variable hydrologique permettant d’émettre une prévision du volume d’apport médian pour les huit mois à venir (PVAM) ne permettait pas d’obtenir des résultats de gestion supérieurs à ceux obtenus avec la variable d’ÉENM.

Page generated in 0.4357 seconds