Spelling suggestions: "subject:"optimsation combinatoire"" "subject:"optimsation combinatoires""
1 |
Algorithmes Branch and Bound parallèles hétérogènes pour environnements multi-coeurs et multi-GPUChakroun, Imen 28 June 2013 (has links) (PDF)
Les algorithmes Branch and Bound (B&B) sont attractifs pour la résolution exacte de problèmes d'optimisation combinatoire (POC) par exploration d'un espace de recherche arborescent. Néanmoins, ces algorithmes sont très gourmands en temps de calcul pour des instances de problèmes de grande taille (exemple : benchmarks de Taillard pour FSP) même en utilisant le calcul sur grilles informatiques [Mezmaz et al., IEEE IPDPS'2007]. Le calcul massivement parallèle fourni à travers les plates-formes de calcul hétérogènes d'aujourd'hui [TOP500 ] est requis pour traiter effi cacement de telles instances. Le dé fi est alors d'exploiter tous les niveaux de parallélisme sous-jacents et donc de repenser en conséquence les modèles parallèles des algorithmes B&B. Dans cette thèse, nous nous attachons à revisiter la conception et l'implémentation des ces algorithmes pour la résolution de POC de grande taille sur (larges) plates-formes de calcul multi-coeurs et multi-GPUs. Le problème d'ordonnancement Flow-Shop (FSP) est considéré comme étude de cas. Une étude expérimentale préliminaire sur quelques grandes instances du FSP a révélé que l'arbre de recherche est hautement irrégulier (en forme et en taille) et très large (milliards de milliards de noeuds), et que l'opérateur d'évaluation des bornes est exorbitant en temps de calcul (environ 97% du temps de B&B). Par conséquent, notre première contribution est de proposer une approche GPU avec un seul coeur CPU (GB&B) dans laquelle seul l'opérateur d'évaluation est exécuté sur GPU. L'approche traite deux dé fis: la divergence de threads et l'optimisation de la gestion de la mémoire hiérarchique du GPU. Comparée à une version séquentielle, des accélérations allant jusqu'à ( 100) sont obtenues sur Nvidia Tesla C2050. L'analyse des performances de GB&B a montré que le surcoût induit par le transfert des données entre le CPU et le GPU est élevé. Par conséquent, l'objectif de la deuxième contribution est d'étendre l'approche (LL-GB&B) a fin de minimiser la latence de communication CPU-GPU. Cet objectif est réalisé grâce à une parallélisation à grain fin sur GPU des opérateurs de séparation et d'élagage. Le défi majeur relevé ici est la divergence de threads qui est due à la nature fortement irrégulière citée ci-dessus de l'arbre exploré. Comparée à une exécution séquentielle, LL-GB&B permet d'atteindre des accélérations allant jusqu'à ( 160) pour les plus grandes instances. La troisième contribution consiste à étudier l'utilisation combinée des GPUs avec les processeurs multi-coeurs. Deux scénarios ont été explorés conduisant à deux approches: une concurrente (RLL-GB&B) et une coopérative (PLL-GB&B). Dans le premier cas, le processus d'exploration est eff ectué simultanément par le GPU et les coeurs du CPU. Dans l'approche coopérative, les coeurs du CPU préparent et transfèrent les sous-problèmes en utilisant le streaming CUDA tandis que le GPU eff ectue l'exploration. L'utilisation combinée du multi-coeur et du GPU a montré que l'utilisation de RLL-GB&B n'est pas bénéfi que et que PLL-GB&B permet une amélioration allant jusqu'à (36%) par rapport à LL-GB&B. Sachant que récemment des grilles de calcul comme Grid5000 (certains sites) ont été équipées avec des GPU, la quatrième contribution de cette thèse traite de la combinaison du calcul sur GPU et multi-coeur avec le calcul distribué à grande échelle. Pour ce faire, les diff érentes approches proposées ont été réunies dans un méta-algorithme hétérofigène qui sélectionne automatiquement l'algorithme à déployer en fonction de la con figuration matérielle cible. Ce méta-algorithme est couplé avec l'approche B&B@Grid proposée dans [Mezmaz et al., IEEE IPDPS'2007]. B&B@Grid répartit les unités de travail (sous-espaces de recherche codés par des intervalles) entre les noeuds de la grille tandis que le méta-algorithme choisit et déploie localement un algorithme de B&B parallèle sur les intervalles reçus. L'approche combinée nous a permis de résoudre à l'optimalité et e fficacement les instances (20 20) de Taillard.
|
Page generated in 0.1073 seconds