• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation des vésicules extracellulaires (VEs) d’origine microgliale et mise en évidence de leur effet neurotrophique / Characterization of microglial extracellular vesicles and investigation of their neurotrophic potential

Arab, Tanina 18 January 2019 (has links)
Les cellules microgliales sont considérées comme les cellules immunitaires résidentes du système nerveux central (SNC). De nombreuses études ont démontré que ces cellules sont activées et recrutées sur le site de lésion. Les cellules microgliales de sangsue présentent un mode d’activation et de migration similaires post lésion expérimentale du SNC. Cette activation est accompagnée d'une libération massive de vésicules extracellulaires (VEs).Les VEs sont de petites particules produites par la plupart des types cellulaires et sont présentes dans plusieurs liquides biologiques, notamment la salive, l'urine, le lait maternel, le plasma et le liquide céphalo-rachidien ... Leur taille varie entre 30 nm et 1 µm de diamètre. Selon leur origine cellulaire, deux populations principales ont été décrites. Les exosomes qui sont connus comme des vésicules d'origine endosomales et les microvésicules qui sont générées suite au bourgeonnement de la membrane plasmique.Les travaux portent sur l'isolation de VEs libérées par des cellules microgliales en culture primaire. Chez la sangsue, ces dernières sont séparées des populations de neurones suite à la dissociation du SNC. Après quatre jours de culture, les VEs des cellules microgliales ont été isolées du milieu et leur contenu protéique a été analysé par spectrométrie de masse.D'autre part, les VEs isolées ont été également testées in vitro pour leur potentiel à induire une croissance neuritique à la fois sur les neurones de sangsue et des lignées cellulaires de neuroblastome de mammifères. / In Mammals, microglial cells are considered as the resident immune cells in central nervous system (CNS). Many studies demonstrated that, after injury, these cells are activated and recruited at the lesion site. Leech microglia presents a similar pattern of microglial activation and migration upon experimental lesion of its CNS. This activation is associated with the release of a large amount of Extracellular Vesicles (EVs). EVs are small particles produced by numerous cell types and found in several biological fluids including saliva, urine, breast milk, plasma and cerebrospinal fluid ... Their size fluctuates between 30 nm and 1 µm in diameter. Depending on their cell origin, two EVs populations are reported: exosomes are described to be endosomales vesicles, while microvesicles are generated after plasma membrane shedding. The main goal of this work was to isolate microglia EVs released in primery culture. For this purpose, microglial cells were separated from neurons after leech CNS dissociation. After four days, EVs were isolated from conditionned medium and their protein content was investigated by mass spectrometry analyses. In the other hand, EVs were assessed for their potential to induce neuritite outgrowth on both leech neurons and mammal neuroblastoma cell lines.
2

Structural Characterization of Human Norovirus Strain VA387 Virus-like Particles

Frank S Vago (14278625) 20 December 2022 (has links)
<p>Human noroviruses (HuNoVs) are the leading cause of an acute form of non-bacterial gastroenteritis, where strains belonging to genogroup (G) II are dominant. Upon expression with the baculovirus culture system, virus-like particles (VLPs) of HuNoVs are expected to assemble into T = 3 icosahedral capsid particles resembling the structure of the infectious virion particles. However, some strains were found to assemble into either T = 1 or T = 4 capsids, or a combination of two different capsid forms. In this study, we showed that VLPs of the Virginia 1997 387 (VA387) GII.4 outbreak strain assembled into T = 1, T = 3, and T = 4 capsids upon expression in insect cell culture, the first case for a naturally occurring HuNoV strain to assemble into all three capsid states. TEM analysis revealed that T = 1 icosahedral particles were the most abundant in purified samples, which contrasts previous findings where either T = 3 or T = 4 were the most abundant. We resolved the cryo-EM structures of the T = 1 shell (S) domain, T = 3, and T = 4 particles to 2.24, 2.44, and 3.43 Å, respectively, making them the most resolved norovirus (NoV) structures to date. Single particle cryo-EM 3D analysis showed that the protruding (P) domain of T = 1 and T = 4 VLPs are highly dynamic. Additionally, we showed that T = 3 VLPs are resistant while T = 1 and T = 4 VLPs are sensitive to digestion in the presence of trypsin. This suggested that T = 1 and T = 4 capsids are less stable among the VLPs, which is consistent with the highly dynamic P domain inferred from our cryo-EM 3D analysis. During infection, HuNoVs travel through the gastrointestinal (GI) tract where they encounter a broad range of variable conditions that include pH, ionic strength, and host defenses (e.g., proteases). Our analyses suggest that virions are T = 3 particles as they can survive the GI tract upon exiting the host. We determined the first cryo-EM structure of T = 3 VLPs in complex with the known HuNoV host cell receptor, histo-blood group antigen (HBGA), to a resolution of 2.51 Å, demonstrating that NoV VLPs can serve as a platform in the structural characterization of small ligand molecules. Lastly, we identified a histidine residue retained in the S domain of all identified caliciviruses critical in the assembly of capsids. Our structures and their characterization will contribute to the development of therapeutic agents to combat noroviruses. </p>

Page generated in 0.0228 seconds