• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sequence Stratigraphy of the Bridal Veil Falls Limestone, Carboniferous, Lower Oquirrh Group, on Cascade Mountain, Utah: A standard Morrowan Cyclostratigraphy for the Oquirrh Basin

Shoore, David Joseph 21 March 2005 (has links) (PDF)
The Bridal Veil Falls Limestone (lowest 400 meters of the Permo-Carboniferous Oquirrh Group) is well exposed on the flanks of Cascade Mountain (Wasatch Front and adjacent mountain ranges) near Provo, Utah. Because of its excellent exposure and location in the heart of the Oquirrh depocenter, this area was selected to develop a sequence stratigraphic framework for Morrowan rocks that may be applied throughout the Oquirrh basin (NW Utah and southern Idaho) as well as the adjacent Ely and Bird Springs troughs. Eleven partial to complete sections of the Bridal Veil Falls Limestone were measured along the west and north flanks of Cascade Mountain and the south end of Mt. Timpanogos. There the limestone is comprised principally of mud-rich carbonate lithofacies punctuated by thin, and sometimes discontinuous quartzose sandstone beds. The predominance of muddy to grain-rich heterozoan limestone microfacies suggests deposition on a west-dipping low energy carbonate ramp that prograded westward throughout Morrowan time. Sandstones reflect transport of siliciclastics from the incipient Weber shelf (located to the NE) during episodes of sea-level lowstand. The Bridal Veil Falls Limestone is subdivided into 21, third and fourth order depositional sequences ranging in thickness from 3 to 60 meters, and 62 parasequences. Parasequences are commonly asymmetrical, reflecting rapid flooding followed by protracted shoaling and/or sea level drop. Selected cycles are recognized in the Lake Mountains, Thorpe Hills, and the southern Oquirrh Mountains to the west of Cascade Mountain indicating that Parasequences delineated at Cascade Mountain are regionally extensive over an area of at least 300 square kilometers.

Page generated in 0.0371 seconds