Spelling suggestions: "subject:"orbit simulationlation"" "subject:"orbit motionsimulation""
1 |
Software Simulation of an Unmanned Vehicle Performing Relative Spacecraft OrbitsRomanelli, Christopher C. 30 May 2006 (has links)
The challenge of sensing relative motion between vehicles is an important subject in the engineering field in recent years. The associated applications range from spacecraft rendezvous and docking to autonomous ground vehicle operations. The focus of this thesis is to develop the simulation tools to examine this problem in the laboratory environment. More specifically, the goal is to create a virtual unmanned ground vehicle that operates in the same manner as an actual vehicle. This simulated vehicle allows for safely testing other software or hardware components before application to the actual vehicle. In addition, the simulated vehicle, in contrast to the real vehicle, is able to operate on different surfaces or even different planets, with different gravitational accelerations. To accomplish this goal, the equations of motion of a two-wheel driven unmanned vehicle are developed analytically. To study the spacecraft application, the equations of motion for a spacecraft cluster are also developed. These two simulations are implemented in a modular form using the UMBRA framework. In addition, an interface between these two simulations is created for the unmanned vehicle to mimic the translational motion of a spacecraft's relative orbit. Finally, some of the limitations and future improvements of the existing simulations are presented. / Master of Science
|
2 |
Rotordynamic and thermal analyses of compliant flexure pivot tilting pad gas bearingsSim, Kyu-Ho 15 May 2009 (has links)
Rotordynamic and thermal analyses of compliant flexure pivot tilting pad gas bearings were performed. First, compliant flexure pivot tilting pad gas bearings with pad radial compliance (CFTPBs) were introduced and designed for high-speed oil-free micro turbomachinery. The pad radial compliance was for accommodation of large rotor growth at high speeds. Parametric studies on pivot offset, preload, and tilting stiffness were performed using non-linear orbit simulations and coast-down simulations for an optimum design. Second, coast-down tests for imbalance response and stability of typical rotor-bearing system with a rigid rotor and two CFTPBs designed from the above design studies were conducted over operating speeds up to 55 krpm. Prediction of synchronous rotordynamic responses was made in terms of critical speed for various imbalance modes by using a rotordynamic analysis software (XLTRC), combined with dynamic force coefficients from the perturbation analysis. For stability analyses, a generalized orbit simulation program was developed considering both the translational and angular rotor motions with two different bearings. Linear stability analyses for the conical vibration mode were also performed by using XLTRC and the perturbation analysis based on the Lund method. Predictions of whirl speed showed good agreement to the tests, but the estimated onset speed of instability appeared lower than the measured instability. Finally, a new thermo-hydrodynamic analysis model of a typical rotor-bearing system with CFTPBs was presented, accompanying linear perturbation analyses to investigate thermal effects on the rotordynamic performance. A numerical procedure was established for solving the generalized Reynolds equation, the 3-D energy equation, and the associated boundary conditions at the pad inlet flow and solid walls (rotor and pad) simultaneously. Parametric studies were conducted on nominal clearance and external load. Nominal clearance showed significant influence on temperature fields, and external load had uneven thermal effects among pads. Case studies with heat flux and temperature boundary conditions on the rotor end surface were performed to simulate various working conditions of the bearing. Large rotor thermal growth due to the high rotor temperature showed noticeable influence on rotordynamic performance by increasing direct stiffness and damping coefficients.
|
3 |
Rotordynamic and thermal analyses of compliant flexure pivot tilting pad gas bearingsSim, Kyu-Ho 15 May 2009 (has links)
Rotordynamic and thermal analyses of compliant flexure pivot tilting pad gas bearings were performed. First, compliant flexure pivot tilting pad gas bearings with pad radial compliance (CFTPBs) were introduced and designed for high-speed oil-free micro turbomachinery. The pad radial compliance was for accommodation of large rotor growth at high speeds. Parametric studies on pivot offset, preload, and tilting stiffness were performed using non-linear orbit simulations and coast-down simulations for an optimum design. Second, coast-down tests for imbalance response and stability of typical rotor-bearing system with a rigid rotor and two CFTPBs designed from the above design studies were conducted over operating speeds up to 55 krpm. Prediction of synchronous rotordynamic responses was made in terms of critical speed for various imbalance modes by using a rotordynamic analysis software (XLTRC), combined with dynamic force coefficients from the perturbation analysis. For stability analyses, a generalized orbit simulation program was developed considering both the translational and angular rotor motions with two different bearings. Linear stability analyses for the conical vibration mode were also performed by using XLTRC and the perturbation analysis based on the Lund method. Predictions of whirl speed showed good agreement to the tests, but the estimated onset speed of instability appeared lower than the measured instability. Finally, a new thermo-hydrodynamic analysis model of a typical rotor-bearing system with CFTPBs was presented, accompanying linear perturbation analyses to investigate thermal effects on the rotordynamic performance. A numerical procedure was established for solving the generalized Reynolds equation, the 3-D energy equation, and the associated boundary conditions at the pad inlet flow and solid walls (rotor and pad) simultaneously. Parametric studies were conducted on nominal clearance and external load. Nominal clearance showed significant influence on temperature fields, and external load had uneven thermal effects among pads. Case studies with heat flux and temperature boundary conditions on the rotor end surface were performed to simulate various working conditions of the bearing. Large rotor thermal growth due to the high rotor temperature showed noticeable influence on rotordynamic performance by increasing direct stiffness and damping coefficients.
|
Page generated in 0.1111 seconds