• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Late Miocene through Modern Evolution of the Zhada Basin, South-Western Tibet

Saylor, Joel Edward January 2008 (has links)
The uplift history of the Tibetan Plateau is poorly constrained in part due to its complex and extended tectonic history. This study uses basin analysis, stable isotope analysis, magnetostratigraphy, detrital zircon U-Pb dating, and paleoaltimetry, and frequency analysis to reconstruct the tectonic, spatial, and environmental evolution of the Zhada basin in southwestern Tibet since the late Miocene. The Zhada Formation, which occupies the Zhada basin and consists of ~ 850 m of fluvial, alluvial fan, eolian, and lacustrine sediments, is undeformed and lies in angular unconformity above Tethyan sedimentary sequence strata. The most negative Miocene δ¹⁸Opsw (paleo-surface water) values reconstructed from aquatic gastropods are significantly more negative than the most negative modern δ¹⁸O(sw) (surface water) values. In the absence of any known climate change which would have produced this difference, we interpret it as indicating a decrease in elevation in the catchment between the late Miocene and the present. Basin analysis indicates that the decrease in elevation was accomplished by two low-angle detachment faults which root beneath the Zhada basin and exhume mid-crustal rocks. This exhumation results from ongoing arc-parallel extension and provides accommodation for Zhada basin fill. Sequence stratigraphy shows that the basin evolved from an overfilled to an underfilled basin but that further evolution was truncated by an abrupt return to overfilled, incising conditions. This evolution is linked to progressive damming of the paleo-Sutlej River. During the underfilled portion of basin evolution, depositional environments were strongly influenced by Milancovitch cyclicity: particularly at the precession and eccentricity frequencies.
2

Paleoenviromentální záznam jezerních sedimentů karbonu středočeských a západočeských pánví:analýza a korelace mineralních a biogenních proxy / Paleoenvironmental record of carboniferous lacustrine deposits of central and western Bohemian basins: analysis and korealiton of mineral and biogenic proxies

Lojka, Richard January 2012 (has links)
Ph.D. thesis represents summary of multidiciplinary palaeoenvironmental and palaeoclimatic research of the most significant Late Pennsylvanian lacustrine horizon of the central and western Bohemian basins - the Malesice Member of the Slaný Formation. Two cores from new shallow drills, situated 80 km apart, were analysed. Multidisciplinary approach is based on description of lamination structure and periodicity; mineral and isotopic composition of autigennic carbonates, namely siderite; compositiona of detrital minerals including clay mineral assemblages; and composition of autochthonous and allochthonous organic particles including palynospectra. Detailed analysis of drill cores lead to the identification of individual phases of lake development linked with lake-level fluctuation and water-column stratification, which were driven by a sume of precipitation and its seasonal distribution. Changes in precipitation also affected compostion and density of vegetational cover in the lake surroundings, weathering intesity of source rocks and degradation of organic matter in the drainage basin, and so precipitation affected final grain-size and composition of detrital material deposited in the lake. Beside common environmental signatures at both studied sites, there are also significant...
3

Oceanic and atmospheric response to climate change over varying geologic timescales

Woodard, Stella C. 2011 May 1900 (has links)
Global climate is controlled by two factors, the amount of heat energy received from the sun (solar insolation) and the way that heat is distributed Earth's surface. Solar insolation varies on timescales of 10s to 100s of thousands of years due to changes in the path of Earth's orbit about the sun (Milankovitch cycles). Earth's internal boundary conditions, such as paleogeography, the presence/absence of polar icecaps, atmospheric/oceanic chemistry and sea level, provide distribution and feedback mechanisms for the incoming heat. Variations in these internal boundary conditions may happen abruptly or, as in the case of plate tectonics, take millions of years. We use geochemical and sedimentological techniques to investigate the response of ocean chemistry, regional aridity and atmospheric and oceanic circulation patterns to climate change during both greenhouse and icehouse climates. To explore the connection between orbitally-forced changes in solar insolation, continental aridity and wind, we generated a high-resolution dust record for ~58 Myr old deep-sea sediments from Shatsky Rise. Our data provide the first evidence of a correlation between dust flux to the deep sea and orbital cycles during the Early Paleogene, indicating dust supply (regional aridity) responded to orbital forcing during the last major interval of greenhouse climate. The change in dust flux was comparable to that during icehouse climates implying subtle variations in solar insolation have a similar impact on climate during intervals of over-all warmth as they do during glacial-interglacial states. The Carboniferous Period (359-299 Ma) marks a critical time in Earth's history when a series of tectonic and biological events caused a shift in the mean climate state from a global "greenhouse" to an "icehouse". Geochemical records extracted from sedimentary rocks deposited in shallow epicontinental seaways are increasingly being used to infer relationships between tectonism, carbon cycling and climate and therefore are assumed to reflect global ocean processes. We analyzed radiogenic isotopes in biogenic apatite along a North American transect to constrain the degree of geochemical coupling between the epicontinental seas and the open ocean. Our results argue strongly for decoupling of North American seaways from the open ocean by latest Mississippian time.

Page generated in 0.0476 seconds