• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelos HMM com dependência de segunda ordem: aplicação em genética.

Zuanetti, Daiane Aparecida 20 February 2006 (has links)
Made available in DSpace on 2016-06-02T20:06:12Z (GMT). No. of bitstreams: 1 DissDAZ.pdf: 2962567 bytes, checksum: 5c6271a67fae12d6b0160ac8ed9351a2 (MD5) Previous issue date: 2006-02-20 / Universidade Federal de Minas Gerais / (See full text for download) / A crescente necessidade do desenvolvimento de eficientes técnicas computacionais e estatísticas para analisar a profusão de dados biológicos transformaram o modelo Markoviano oculto (HMM), caso particular das redes bayesianas ou probabilísticas, em uma alternativa interessante para analisar sequências de DNA. Uma razão do interesse no HMM é a sua flexibilidade em descrever segmentos heterogêneos da sequência através de uma mesma estrutura de dependência entre as variáveis, supostamente conhecida. No entanto, na maioria dos problemas práticos, a estrutura de dependência não é conhecida e precisa ser também estimada. A maneira mais comum para estimação de estrutra de um HMM é o uso de métodos de seleção de modelos. Outra solução é a utilização de metodologias para estimação da estrutura de uma rede probabilística. Neste trabalho, propomos o HMM de segunda ordem e seus estimadores bayesianos, definimos o fator de Bayes e o DIC para seleção do HMM mais adequado a uma sequência específica, verificamos seus desempenhos e a performance da metodologia proposta por Friedman e Koller (2003) em conjunto de dados simulados e aplicamos estas metodologias em duas sequências de DNA: o intron 7 do gene a - fetoprotein dos cimpanzés e o genoma do parasita Bacteriophage lambda, para o qual o modelo de segunda ordem é mais adequado.

Page generated in 0.0516 seconds