Spelling suggestions: "subject:"ordinal ariable"" "subject:"ordinal aariable""
1 |
New Technique for Imputing Missing Item Responses for an Ordinal Variable: Using Tennessee Youth Risk Behavior Survey as an Example.Ahmed, Andaleeb Abrar 15 December 2007 (has links) (PDF)
Surveys ordinarily ask questions in an ordinal scale and often result in missing data. We suggest a regression based technique for imputing missing ordinal data. Multilevel cumulative logit model was used with an assumption that observed responses of certain key variables can serve as covariate in predicting missing item responses of an ordinal variable. Individual predicted probabilities at each response level were obtained. Average individual predicted probabilities for each response level were used to randomly impute the missing responses using a uniform distribution. Finally, likelihood ratio chi square statistics was used to compare the imputed and observed distributions. Two other forms of multiple imputation algorithms were performed for comparison. Performance of our imputation technique was comparable to other 2 established algorithms. Our method being simpler does not involve any complex algorithms and with further research can potentially be used as an imputation technique for missing ordinal variables.
|
2 |
Analýza a predikce výsledků ligových utkání / Analysis and prediction of league games resultsŠimsa, Filip January 2015 (has links)
The thesis is devoted to an analysis of ice hockey matches results in the highest Czech league competition in seasons 1999/2000 to 2014/2015 and to prediction of the following matches. We describe and apply Kalman filter theory where forms of teams represent an unobservable state vector and results of matches serve as measurements. Goal differences are identified as a suitable transformation of a match result. They are used as a dependent variable in a linear regression to find significant predictors. For a prediction of a match result we construct an ordinal model with those predictors. By using generalized Gini coefficient, we compare a diversifica- tion power of this model with betting odds, which are offered by betting companies. At the end, we combine knowledge of odds before a match with other predictors to make a prediction model. This model is used to identify profitable bets. 1
|
Page generated in 0.0679 seconds