• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of different Ordinary Portland cement binders, partially replaced by fly ash and slag, on the properties of self-compacting concrete

Almuwbber, Omar Mohamed January 2015 (has links)
Thesis submitted in fulfilment of the requirements for the degree Master of Technology: Civil Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology / Self-compacting concrete (SCC) is a flowable self-consolidating concrete which can fill formwork without any external vibration. A self-compacting concrete mix requires the addition of superplasticiser (SP), which allows it to become more workable without the addition of excessive water to the mixture. The effect of different CEM I 52.5N cements produced by one company at different factories on self-compacting concrete was investigated. The properties of SCC are highly sensitive to changes in material properties, water content and addition of admixtures. For self-compacting concrete to be more accepted in South Africa, the effect that locally sourced materials have on SCC, partially replaced with extenders, needs to be investigated. The European guidelines for SCC (2005) determined the standard, through an extensive study, for the design and testing of self-compacting concrete. Using these guidelines, the properties of self-compacting concrete with the usage of local materials were investigated. The effect on SCC mixes was studied by using four cements; two types of SPs – partially replaced with two types of fly ash; and one type of slag. Mix design and tests were done according to the European Specification and Guidelines for Self-Compacting Concrete (2005). Using locally sourced materials (different cements, sand, coarse aggregate, fly ashes and slag), mixes were optimised with different SPs. Optimisation was achieved when self-compacting criteria, as found in the European guidelines, were adhered to, and the binders in these required mixes were then partially replaced with fly ash and slag at different concentrations. Tests done were the slump flow, V-funnel, L-box, sieve segregation resistance as well as the compressive strength tests. The results obtained were then compared with the properties prescribed by the European guidelines. The cements reacted differently when adding the SPs, and partially replacing fly ash and slag. According to the tests, replacing cement with extenders – in order to get a sufficient SCC – seemed to depend on the chemical and physical properties of each cement type, including the soluble alkali in the mixture, C3A, C3S and the surface area. The range, in which the concentration of these chemical and physical cement compounds should vary – in order to produce an acceptable SCC partially replaced by extenders – was determined and suggested to the cement producer. The main conclusion of this project is that cement properties vary sufficiently from factory to factory so as to influence the performance of an SCC mix. The problem becomes even bigger when such cements are extended with fly ash or slag, and when different SPs are used. When designing a stable SCC mix, these factors should be taken into account.
2

The properties of geopolymer concrete incorporating red sand as fine aggregate

Soltaninaveh, Kaveh January 2008 (has links)
Concrete is the most common building material in the world and its use has been increasing during the last century as the need for construction projects has escalated. Traditionally, concrete uses Ordinary Portland Cement (OPC) as binder, water as the activator of cement and aggregate. Finding an appropriate replacement for traditional concrete is a desirable solution to obviate the environmental problems caused by cement production. The use of fly ash as a partial replacement for Portland cement is a method to maintain the properties of concrete and reduce the need for cement. Fly ash is a by-product from coal-fired power plants and is abundantly available. The percentage of cement replacement can be varied according to application and mix design. One of the potential materials to substitute for conventional concrete is geopolymer concrete (introduced by Davidovits in 1979). Geopolymer concrete is an inorganic alumino-silicate polymer synthesized from predominantly silicon, aluminum and byproduct materials such as fly ash. Geopolymer properties have been investigated for several years and it is still a major area of interest among researchers and industry partners as it does not contain cement and uses fly ash and alkali liquids as binders to produce a paste to consolidate aggregates. Furthermore, the aggregate comprises a substantial portion of concrete. Including coarse and fine aggregates it is normally obtained from natural sources. Fine aggregate in Australia is usually mined from sand quarries. As the demand for concrete production increases, more natural sand is needed. The need for fine aggregate should be addressed in an environmentally friendly manner, considering the diminishing sources of natural sand. Red sand is a by-product generated from the manufacture of alumina from bauxite by the Bayer process. / Previous studies on properties of red sand have shown that it has the potential to be used in concrete as a fine aggregate. While the use of red sand in traditional concrete has been investigated by some researchers, no research has been reported regarding the use of this by-product in manufacturing geopolymer concrete. This research looks into the replacement of natural sand fine aggregates with red sand in geopolymer concrete. Initially, an extensive series of mixtures was prepared and tested. The objective of the research was to identify the salient parameters affecting the properties of geopolymer concrete when natural sand is replaced by red sand. At the next stage, attempts were made to enhance the mechanical and durability features of red sand geopolymer concrete. The final stage consisted of testing red sand geopolymer concrete to find out the various properties of this novel construction material.
3

Long-Term Durability of Ordinary Portland Cement and Polypropylene Fiber Stabilized Soil

ARYAL, SUMAN 01 August 2019 (has links)
Soft soil stabilization frequently uses cement, lime, fly ash, etc., but very limited studies were conducted on the long-term durability of stabilized soil. The present research work deals with the long-term durability of commercially available soil (i.e., EPK clay) stabilized with ordinary Portland cement and polypropylene fiber using a realistic approach, where the effect can be noticed in each weathering cycle. In the present study, two different tests (i.e., wetting-drying and freezing-thawing) were conducted to analyze the long-term durability of stabilized soil. Cycles of higher temperature followed by rainfall, which generally occurs in southern states of the US, were analyzed by the wetting-drying test; and on the other hand, cycles of freezing temperature followed by normal temperature, which generally occurs in northern states of the US and Canada, were analyzed by the freezing-thawing test. For the mid-continental region where freezing, normal, and higher temperature followed by rainfall are expected to occur, hence both the test method i.e., wetting-drying and freezing-thawing, were suggested. Laboratory experimental investigations were conducted to find the percentage loss of stabilized soil during wetting-drying and freezing-thawing tests, which were used as a durability indicator for cement and cement-fiber stabilized soil. Stabilized samples were subjected to harsh environmental conditions in a laboratory set up, and their deterioration was observed and studied after each wetting-drying and freezing-thawing cycle. In the real world, stabilized soil encounters seasonal cycles of monsoon and summer in long run of its service life which was simulated in rapid weathering cycles in laboratory setup. EPK clay samples were stabilized with different percentages of cement, and a mix of cement-fiber combination and were subjected to 12 cycles of wetting-drying and freezing-thawing cycles separately to determine the percentage loss of soil in accordance with the ASTM standards. Finally, based on percentage loss of soil of those stabilized samples which survived up to 12 cycles of weathering action, the optimum content of stabilizing agent was determined for wetting-drying and freezing-thawing tests. Results of wetting-drying tests indicate that EPK clay stabilized with ordinary Portland cement and fiber combination survived up to 12 cycles, but only 10% cement + 0.5% fiber was durable against wetting-drying based on percentage loss. For all the samples stabilized with 10% cement + 0.5% fiber combination, the percentage loss of soil when subjected to durability test was less than 7%, which satisfy the Portland Cement Association’s (PCAs) durability specification. The results of freezing-thawing tests indicate that the EPK clay stabilized with 10% cement, 5% cement + 0.5% fiber, and 10% cement + 0.5% fiber survived up to 12 cycles and were durable against freezing-thawing based on percentage loss of soil i.e., less than 7% which satisfy the Portland Cement Association’s durability specification.
4

Flexural Behaviour of Geopolymer Concrete T-beams Reinforced with FRP or Hybrid FRP/Steel bars

Hasan, Mohamad A.A. January 2022 (has links)
The full text will be available at the end of the embargo: 26th April 2025
5

Investigating mechanical properties of ordinary portland cement : investigating improvements to the mechanical properties of Ordinary Portland Cement (OPC) bodies by utilizing the phase transformation properties of a ceramic (zirconia)

Almadi, Alaa January 2012 (has links)
The effects of metastable tetragonal zirconia on the properties of Ordinary Portland Cement were observed during which the effect of crystallite size pH on the preparation solution, precursor salt, and the presence of co-precipitates, Fe(OH)3, SnO2 and SiO2 on the crystallization temperature, enthalpy and crystal structure, immediately following the crystallization exothermic burst phenomenon in ZrO2 were measured. Thermal analysis and x-ray methods were used to determine crystallite sizes and structures immediately following the exothermic burst. Comparisons were made for zirconias prepared from oxychloride, chloride and nitrate solutions. The existence of tetrameric hydroxidecontaining ions in oxychloride precursor is used to rationalise low values of crystallization enthalpy. The position of the crystallization temperature, Tmax was not dependent on crystallite size alone but also on the pH at which the gel was made, the surface pH after washing, and the presence of diluent oxides. Enthalpy v r1/2 and Tmax v (diluent vol)1/3 relationships indicate that surface coverage effects dominate a surface nucleated phenomenon. The data established for ZrO2 systems was used to develop tetragonal-ZrO2-SnO2 powders capable of improving the mechanical properties of Ordinary Portland Cement discs. The ZrO2-OPC discs were prepared by powder mixing, water hydration and uniaxial pressing. Vicat needle tests showed that tetragonal-ZrO2 increases the initial setting rate. Microscopy indicated that porosity distribution changes near to ZrO2 particles. Zirconia has also been introduced into OPC discs by vacuum infiltration methods developed for solutions and colloidal suspensions. Comparisons between OPC discs and the OPCtetragonal ZrO2 composites have been made on the basis of diametral compression strength, Young’s modulus, hardness and toughness (K1c), as estimated by the cracked indentation method. Bell-shaped curves are found for the way the mechanical properties are changed as a function of Zirconia content.
6

Etude de paramètres endogènes et exogènes au ciment Portland ordinaire influençant l'hydratation de sa phase principale : le silicate tricalcique / Study of parameters endogeneous and exogeneous to ordinary Portland ciment influencing hydration of its main phase : tricalcium silicate

Begarin, Farid 22 November 2012 (has links)
Ce travail consacré à l’étude des différents paramètres influençant l’hydratation de la phase silicate principale du Ciment Portland Ordinaire (OPC) a été réalisé au Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB). Cette étude s’inscrit dans le cadre du projet « Crystal Growth Control » initié par BASF dans le but de contrôler et de prévoir le mieux possible l’hydratation du Ciment Portland Ordinaire. La dissolution de l’alite, comme celle du C3S pur, est rapide dans l’eau pure. La vitesse diminue avec l’écart à l’équilibre et la concentration en ions aluminates en solution. On observe également une adsorption sur la surface de l’alite de l’aluminium libéré par la dissolution. La germination et la croissance des C-S-H a été étudié d’une part, en présence d’aluminates en solution et d’autre part en présence de sels inorganiques connus pour être des accélérateurs de l’hydratation du ciment Portland Ordinaire. La présence d’aluminium ne modifie pas la germination initiale des C-S-H mais semble participer directement à l’origine de la période dormante du ciment. L’hydratation du C3S dans des solutions salines conduit à former pendant la germination initiale d’autant plus de C-S-H que la solution est concentrée. De plus la morphologie des germes est modifiée. Chaque germe doit contenir plus de matière en occupant moins de surface. La simulation de l’ensemble de la courbe d’avancement de l’hydratation observée dans les solutions de sels de nitrates et d’halogénures de calcium, sodium et potassium à l’aide du modèle de croissance par agrégation de particules cubiques confirme l’anisotropie au cours de la croissance des germes. La vitesse de croissance des C-S-H perpendiculairement à la surface des grains augmente avec la concentration et l’effet est très dépendant de la nature de l’anion. Ce comportement est à rapprocher des séries d’Hofmeister / This work devoted to study various parameters influencing hydration of silicate phase main Ordinary Portland Cement (OPC) was performed at the Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB). This study is part of the project "Crystal Growth Control" initiated by BASF in order to monitor and provide the best as possible the hydration of Ordinary Portland Cement. The dissolution of alite, like the pure C3S one, is fast in pure water. Speed decreases with deviation from equilibrium and the concentration of aluminates ions in solution. There is also an adsorption on the surface of the aluminum which is into the alite and released by dissolution. Germination and growth of C-S-H has been studied on the one hand, in the presence of aluminates ions within the solution and the other, in the presence of inorganic salts known to be accelerators of Ordinary Portland cement hydration. The presence of aluminum does not alter the initial germination of C-S-H but seems directly involved in the origin of the dormant period of cement. The hydration of C3S in salt solutions leads to the formation during the initial germination even more C-S-H that the solution is concentrated. In addition, the morphology of seeds is modified. Each seed must contain more material occupying less space. Simulation of the entire hydration progress curve observed in solutions of salts of nitrates and halides of calcium, sodium and potassium with the growth model based on the cubic particles aggregation confirms the anisotropy in the growth of seeds. The C-S-H perpendicular growth rate to the surface of the grains increases with the salt concentration and the effect is very dependent on the nature of the anion. This behavior is closer to the Hofmeister series
7

Investigating mechanical properties of ordinary portland cement. Investigating improvements to the mechanical properties of Ordinary Portland Cement (OPC) bodies by utilizing the phase transformation properties of a ceramic (Zirconia).

Almadi, Alaa January 2012 (has links)
The effects of metastable tetragonal zirconia on the properties of Ordinary Portland Cement were observed during which the effect of crystallite size pH on the preparation solution, precursor salt, and the presence of co-precipitates, Fe(OH)3, SnO2 and SiO2 on the crystallization temperature, enthalpy and crystal structure, immediately following the crystallization exothermic burst phenomenon in ZrO2 were measured. Thermal analysis and x-ray methods were used to determine crystallite sizes and structures immediately following the exothermic burst. Comparisons were made for zirconias prepared from oxychloride, chloride and nitrate solutions. The existence of tetrameric hydroxidecontaining ions in oxychloride precursor is used to rationalise low values of crystallization enthalpy. The position of the crystallization temperature, Tmax was not dependent on crystallite size alone but also on the pH at which the gel was made, the surface pH after washing, and the presence of diluent oxides. Enthalpy v r1/2 and Tmax v (diluent vol)1/3 relationships indicate that surface coverage effects dominate a surface nucleated phenomenon. The data established for ZrO2 systems was used to develop tetragonal-ZrO2-SnO2 powders capable of improving the mechanical properties of Ordinary Portland Cement discs. The ZrO2-OPC discs were prepared by powder mixing, water hydration and uniaxial pressing. Vicat needle tests showed that tetragonal-ZrO2 increases the initial setting rate. Microscopy indicated that porosity distribution changes near to ZrO2 particles. Zirconia has also been introduced into OPC discs by vacuum infiltration methods developed for solutions and colloidal suspensions. Comparisons between OPC discs and the OPCtetragonal ZrO2 composites have been made on the basis of diametral compression strength, Young’s modulus, hardness and toughness (K1c), as estimated by the cracked indentation method. Bell-shaped curves are found for the way the mechanical properties are changed as a function of Zirconia content.

Page generated in 0.1 seconds