Spelling suggestions: "subject:"organ dos"" "subject:"organ done""
1 |
Radiation Dose Optimization For Critical OrgansJanuary 2013 (has links)
abstract: Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities [1], however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical organs across all input data scenarios which are corresponding to the positioning and size of the organs. The computational results indicate up to 26% increase in the absorbed dose calculated for the robust approach which ensures the feasibility across scenarios. / Dissertation/Thesis / Ph.D. Industrial Engineering 2013
|
2 |
Radiation dose evaluation in tomosynthesis and C-arm cone-beam CT examinations with an anthropomorphic phantomKoyama, Shuji, Aoyama, Takahiko, Oda, Nobuhiro, Yamauchi-Kawaura, Chiyo 08 1900 (has links)
No description available.
|
3 |
Développement d’un outil d’optimisation de la dose aux organes en fonction de la qualité image pour l’imagerie scanographique / Tool development for organ dose optimization taking into account the image quality in Computed TomographyAdrien, Camille 30 September 2015 (has links)
Ces dernières années, la multiplication du nombre d’actes d’imagerie scanographique a eu pour conséquence l’augmentation de la dose collective due aux examens d’imagerie médicale. La dose au patient en imagerie scanographique est donc devenue un enjeu de santé publique majeur impliquant l’optimisation des protocoles d’examen, ces derniers devant tenir compte de la qualité image, indispensable aux radiologues pour poser leur diagnostic. En pratique clinique, l’optimisation est réalisée à partir d’indicateurs empiriques ne donnant pas accès à la dose aux organes et la qualité image est mesurée sur des fantômes spécifiques, tel que le fantôme CATPHAN®. Sans aucune information sur la dose aux organes et aucun outil pour prendre en compte l’avis du praticien, il est difficile d’optimiser correctement les protocoles. Le but de ce travail de thèse est de développer un outil qui permettra l’optimisation de la dose au patient tout en préservant la qualité image nécessaire au diagnostic. Ce travail est scindé en deux parties : (i) le développement d’un simulateur de dose Monte Carlo (MC) à partir du code PENELOPE, et (ii) l’estimation d’un critère de qualité image objectif. Dans ce but, le scanner GE VCT Lightspeed 64 a été modélisé à partir des informations fournies dans la note technique du constructeur et en adaptant la méthode proposée par Turner et al (Med. Phys. 36:2154-2164). Les mouvements axial et hélicoïdal du tube ont été implémentés dans l’outil MC. Pour améliorer l’efficacité de la simulation, les techniques de réduction de variance dites de splitting circulaire et longitudinal ont été utilisées. Ces deux réductions de variances permettent de reproduire le mouvement uniforme du tube le long de l’axe du scanner de manière discrète. La validation expérimentale de l’outil MC a été réalisée dans un premier temps en conditions homogènes avec un fantôme fabriqué au laboratoire et le fantôme CTDI, habituellement utilisé en routine clinique pour les contrôles qualité. Puis, la distribution de la dose absorbée dans le fantôme anthropomorphe CIRS ATOM, a été mesurée avec des détecteurs OSL et des films Gafchromic® XR-QA2. Ensuite, la dose aux organes a été simulée pour différentes acquisitions dans le fantôme femme de la CIPR 110 afin de créer une base de données utilisable en clinique. En parallèle, la qualité image a été étudiée en utilisant le fantôme CATPHAN® 600. A partir du module CTP 404, le rapport signal sur bruit (SNR pour signal to noise ratio) a été calculé en utilisant le modèle développé par Rose (J. Opt. Soc. Am. A 16:633-645). Un grand nombre d’images, correspondant à différents paramètres d’acquisition et de reconstruction, ont été analysées afin d’étudier les variations du SNR. Les acquisitions avec un SNR proche du critère de Rose ont été sélectionnées pour permettre des nouvelles acquisitions avec un fantôme préclinique contenant des petites structures suspectes en PMMA de différents diamètres. Ces images ont été analysées par deux radiologues expérimentés. Sur chaque image, ils devaient déterminer si une anomalie était présente ou non et indiquer leur niveau de confiance sur leur choix. Deux courbes ROC ont ainsi été obtenues : une pour les anomalies dites « détectables » par le critère de Rose (SNR > 5), et une pour les anomalies dites « non-détectables ». L’analyse des courbes montre que les deux radiologues détectent plus facilement les lésions suspectes lorsque que le critère de Rose est satisfait, démontrant le potentiel du modèle de Rose dans l’évaluation de la qualité image pour les tâches cliniques de détection. En conclusion, à partir des paramètres d’acquisition, la dose aux organes a été corrélée à des valeurs de SNR. Les premiers résultats prouvent qu’il est possible d’optimiser les protocoles en utilisant la dose aux organes et le critère de Rose, avec une réduction de la dose pouvant aller jusqu’à un facteur 6. / Due to the significant rise of computed tomography (CT) exams in the past few years and the increase of the collective dose due to medical exams, dose estimation in CT imaging has become a major public health issue. However dose optimization cannot be considered without taking into account the image quality which has to be good enough for radiologists. In clinical practice, optimization is obtained through empirical index and image quality using measurements performed on specific phantoms like the CATPHAN®. Based on this kind of information, it is thus difficult to correctly optimize protocols regarding organ doses and radiologist criteria. Therefore our goal is to develop a tool allowing the optimization of the patient dose while preserving the image quality needed for diagnosis. The work is divided into two main parts: (i) the development of a Monte Carlo dose simulator based on the PENELOPE code, and (ii) the assessment of an objective image quality criterion. For that purpose, the GE Lightspeed VCT 64 CT tube was modelled with information provided by the manufacturer technical note and by adapting the method proposed by Turner et al (Med. Phys. 36: 2154-2164). The axial and helical movements of the X-ray tube were then implemented into the MC tool. To improve the efficiency of the simulation, two variance reduction techniques were used: a circular and a translational splitting. The splitting algorithms allow a uniform particle distribution along the gantry path to simulate the continuous gantry motion in a discrete way. Validations were performed in homogeneous conditions using a home-made phantom and the well-known CTDI phantoms. Then, dose values were measured in CIRS ATOM anthropomorphic phantom using both optically stimulated luminescence dosimeters for point doses and XR-QA Gafchromic® films for relative dose maps. Comparisons between measured and simulated values enabled us to validate the MC tool used for dosimetric purposes. Finally, organ doses for several acquisition parameters into the ICRP 110 numerical female phantoms were simulated in order to build a dosimetric data base which could be used in clinical practice. In parallel to this work, image quality was first studied using the CATPHAN® 600. From the CTP 404 inserts, the signal-to-noise ratio (SNR) was then computed by using the classical Rose model (J. Opt. Soc. Am. A 16:633-645). An extensive number of images, linked to several acquisitions setups, were analyzed and SNR variations studied. Acquisitions with a SNR closed to the Rose criterion were selected. New acquisitions, based on those selected, were performed with a pre-clinical phantom containing suspect structures in PMMA. These images were presented to two senior radiologists. Both of them reviewed all images and indicated if they were able to locate the structures or not using a 5 confidence levels scale. Two ROC curves were plotted to compare the detection ability if the bead was detectable (SNR > 5) or not. Results revealed a significant difference between the two types of image and thus demonstrated the Rose criterion potential for image quality quantification in CT. Ultimately, organ dose estimations were linked to SNR values through acquisition parameters. Preliminary results proved that an optimization can be performed using the Rose criterion and organ dose estimation, leading to a dose reduction by a factor up to 6.
|
4 |
Assessment of two optimization strategies for pediatric computed tomography examinations: Bismuth shielding & organ-based tube current modulationSkyttner, Sofia January 2017 (has links)
Background: It is well known that pediatric patients are different from adult patients. Not only are children of a smaller physical size, but their anatomy differs as well. They are also more vulnerable to ionizing radiation than adults are, since their larger attributable life-time risk for cancer. This entitles children as extra radiosensitive patients, and special concern should be taken regarding their radiosensitive organs. Computed tomography (CT) examinations inevitably involve exposure of all skin-deep organs although rarely being objects for the diagnostic task. For example, multiple CT head examinations increase the risk of radiation induced cataract in eye lenses. Absorbed dose to these radiosensitive skin-deep organs should therefore be decreased by available optimization strategies in accordance withthe ALARA principle -as low as reasonably achievable- which guides the process of optimization anddose reduction. Two optimization strategies to decrease absorbed dose to skin-deep organs are Bismuth (Bi) shielding and organ-based tube current modulation (organ-based TCM). Aim: The aim of this work was to assess two dose optimization strategies for decreasing absorbed dose to skin-deep organs in pediatric CT imaging: Bi shielding and organ-based TCM. The specific patient categories chosen were newborn, one year old and five year old. Materials and Methods: Three anthropomorphic phantoms representing newborn, one year old and five year old were scanned with CT protocol parameters selected in accordance with clinical routine for pediatric CT examinations at Karolinska University Hospital in Stockholm. Dose differences from introducing the optimization strategies were obtained by using thermoluminescence dosimeters (TLDs) and metal oxide semiconductor feld effect transistor dosimeters (MOSFETs). Monte Carlo estimated dose values were introduced as a comparison to further establish the validity of the obtained measured values. Results: The benefit in decreased radiation dose to anterior skin-deep organs - when applying the optimization strategies - depended on both body region and body size. Bi shielding was more advantageous the smaller and less attenuating the body was. Organ-based TCM was more advantageous, if an increased dose to posterior organs could be accepted. A less attenuating and smaller phantom did not benefit by organ-based TCM due to increased posterior irradiation. Conclusions: The general conclusion is that the optimal choice of optimization strategy will depend on both body region being scanned and age. Regarding CT head examinations, pediatric patients of ages between newborn and five year old will benefit most by application of organ-based TCM, if an increased dose to backside head can be justified. Regarding CT thorax examinations, newborn and one year old patients will benefit most by application of Bi shielding, while organ-based TCM is preferable for five year old patients.
|
Page generated in 0.0653 seconds