• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An inaugural essay on the mutual subserviencies of the different parts of the body : and the power of one part to perform the function of another : submitted to the examination of the Rev. J. Andrews ... the Trustees & medical faculty of the University of Pennsylvania, on the twenty-first day of April, 1806 for the degree of Doctor of Medicine /

M'Call, Edwin L. Stiles, Thomas T., January 1806 (has links)
Thesis (M.D.) -- University of Pennsylvania, 1806. / Film 633 reel 62 is part of Research Publications Early American Medical Imprints collection (RP reel 62, no. 1167). DNLM Includes bibliographical references.
2

Absence of nonlinear responses in cells and tissues exposed to RF energy at mobile phone frequencies using a doubly resonant cavity

Kowalczuk, C., Yarwood, G., Blackwell, R., Priestner, M., Sienkiewicz, Z., Bouffler, S., Ahmed, I., Abd-Alhameed, Raed, Excell, Peter S., Hodzic, V., Davis, C., Gammon, R., Balzano, Q. January 2010 (has links)
A doubly resonant cavity was used to search for nonlinear radiofrequency (RF) energy conversion in a range of biological preparations, thereby testing the hypothesis that living tissue can demodulate RF carriers and generate baseband signals. The samples comprised high-density cell suspensions (human lymphocytes and mouse bone marrow cells); adherent cells (IMR-32 human neuroblastoma, G361 human melanoma, HF-19 human fibroblasts, N2a murine neuroblastoma (differentiated and non-differentiated) and Chinese hamster ovary (CHO) cells) and thin sections or slices of mouse tissues (brain, kidney, muscle, liver, spleen, testis, heart and diaphragm). Viable and non-viable (heat killed or metabolically impaired) samples were tested. Over 500 cell and tissue samples were placed within the cavity, exposed to continuous wave (CW) fields at the resonant frequency (f) of the loaded cavity (near 883 MHz) using input powers of 0.1 or 1 mW, and monitored for second harmonic generation by inspection of the output at 2f. Unwanted signals were minimised using low pass filters (</= 1 GHz) at the input to, and high pass filters (>/= 1 GHz) at the output from, the cavity. A tuned low noise amplifier allowed detection of second harmonic signals above a noise floor as low as -169 dBm. No consistent second harmonic of the incident CW signals was detected. Therefore, these results do not support the hypothesis that living cells can demodulate RF energy, since second harmonic generation is the necessary and sufficient condition for demodulation.
3

Innate Immune Memory and the Host Response to Infection

Sherwood, Edward R., Burelbach, Katherine R., McBride, Margaret A., Stothers, Cody L., Owen, Allison M., Hernandez, Antonio, Patil, Naeem K., Williams, David L., Bohannon, Julia K. 15 February 2022 (has links)
Unlike the adaptive immune system, the innate immune system has classically been characterized as being devoid of memory functions. However, recent research shows that innate myeloid and lymphoid cells have the ability to retain memory of prior pathogen exposure and become primed to elicit a robust, broad-spectrum response to subsequent infection. This phenomenon has been termed innate immune memory or trained immunity. Innate immune memory is induced via activation of pattern recognition receptors and the actions of cytokines on hematopoietic progenitors and stem cells in bone marrow and innate leukocytes in the periphery. The trained phenotype is induced and sustained via epigenetic modifications that reprogram transcriptional patterns and metabolism. These modifications augment antimicrobial functions, such as leukocyte expansion, chemotaxis, phagocytosis, and microbial killing, to facilitate an augmented host response to infection. Alternatively, innate immune memory may contribute to the pathogenesis of chronic diseases, such as atherosclerosis and Alzheimer's disease.

Page generated in 0.0717 seconds