• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 466
  • 350
  • 124
  • 44
  • 37
  • 29
  • 12
  • 9
  • 8
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 1216
  • 1216
  • 434
  • 395
  • 383
  • 227
  • 221
  • 180
  • 144
  • 142
  • 136
  • 123
  • 99
  • 95
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Physical and Chemical Parameters of Common Soils in the Central Plateau Region of Haiti

Stewart, Ryan E. 23 May 2012 (has links) (PDF)
Soil degradation is a common occurrence in Haiti that is mainly caused by the cultivation of marginal lands and deforestation, which both contribute to the excessive erosion rate seen in the country today. The Central Plateau of Haiti is a mountainous region in which a majority of the population is rural and practices subsistence agriculture on hillsides and steeply-sloping land. Essential plant nutrients, such as nitrogen (N) and phosphorus (P), are commonly a limiting factor in crop production, yet fertilizer is unavailable or is too expensive for smallholder farmers to purchase. This study was conducted to a) evaluate organic matter and nutrient stocks of various soils in the Central Plateau region, along with other chemical and physical characteristics and b) to evaluate the phosphorus-scavenging ability of commonly-grown crops to isolate those that may benefit subsequent smallholder yields. Soils from four locations in the Central Plateau were assessed for organic matter in labile and non-labile fractions as well as for cation exchange capacity (CEC), total organic carbon (C) and N, pH, texture, and other characteristics. Results indicated that most of the soil (92%) was contained within aggregates, and organic matter was mainly present in stable, slowly-decomposing fractions. Seven species were evaluated in a controlled-environment pot experiment for bulk and rhizosphere soil P and pH, plant dry weight, and above- and below-ground P tissue content as indicators of the species' ability to solubilize P from the soil. Velvet bean (Mucuna pruriens (L.) DC) produced the most biomass and was able to take up the most P, though lablab (Lablab purpureous (L.) Sweet), took up comparable amounts of P. / Master of Science / LTRA-6 (A CAPS program for the Central Plateau of Haiti)
142

Biogeochemical and ecohydrologic controls on arsenic mobilization in groundwater of the Okavango Delta

Enriquez, Hersy J. January 1900 (has links)
Master of Science / Department of Civil Engineering / Natalie Mladenov / The detrimental health effects of arsenic (As) contamination have motivated the study of As mobility around the globe. The variability in naturally occurring As concentration is due to variation in geology and climate. In arid environments with high evaporation, ecohydrology and As desorption under alkaline pH are thought to be responsible for high As concentrations. In reducing groundwater, on the other hand, microbial iron (Fe) reductive dissolution is known to release As into solution. In such environments, As-sulfide minerals precipitation and vegetation uptake could contribute to re-distribution of As. The Okavango Delta is an arid-zone wetland punctuated by ten of thousands of islands, and the reducing groundwater beneath these islands have dissolved As as high as 3000 µg•L[superscript]-1. Ecohydrologic controls are thought to contribute to the elevated As level; however dissolution of Fe-containing sediments has been proposed as the initial step in releasing As from sediment to the groundwater. To test the consistency of the hypothesized mechanisms, four islands were sampled in January 2013. The goal of this thesis is to: 1) provide more evidence on the zones of elevated As in groundwater of four islands, 2) gain understanding on the influence ecohydrology (i.e., evapotranspiration) on high As in groundwater, 3) evaluate the sediment of microbial community composition, and 4) gain new insights into the behavior of DOM along the groundwater flow path. The findings show zones of elevated As in all four islands. The ecohydrologic controls provide information on the location of high As and solute accumulation. Microbial analyses suggest DNA sequences collected were grouped within lineages that contain organisms capable of dissimilatory Fe reduction and sulfate reduction. This supports evidence from previous study that sulfide produced by microbial sulfate reduction is available for As-sulfide mineral formation. The variation of DOM characteristics could influence As solubility and reactivity. In addition, carbonate alkalinity and increase pH may contribute to As mobility further along the flow path. In this arid and reducing groundwater, we find that ecohydrologic and biogeochemical processes have a fundamental role in As mobility.
143

Microalgae to energy : biomass recovery and pre-treatments optimisation for biogas production integrated with wastewater nutrients removal

Ometto, Francesco January 2014 (has links)
The increasing concern about water quality and energy demand promotes the development of innovative and low-cost processes to improve the nutrient uptake and energy efficiency of existing wastewater treatments (WWT). In this context, the inclusion of a microalgae system (MAS) in the flowsheet of a WWT plant represents a sustainable alternative to conventional technologies, as it combines a low-cost nutrient uptake system with the production of biomass suitable for biofuel production. However, at present, the energy required to cultivate and process the algae cells is often too high to justify their use. The adoption of a low energy harvesting system and an efficient energy conversion process are the sine qua non requirements to guarantee the sustainability of the process. In this thesis, current and innovative harvesting technologies for large scale applications have been reviewed to identify the optimal working conditions of each system and their link to the main characteristics of the algae suspension. In particular, the performance of the Ballasted Dissolved Air Flotation (BDAF) system was investigated using different algae and compared to the conventional Dissolved Air Flotation (DAF). BDAF was demonstrably a very viable harvesting method where the use of floating microspheres as ballasting agents allowed significant coagulant savings, reduced the level of energy dissipation within the flotation chamber, and lowered the overall carbon emissions and the process costs. Cont/d.
144

Soil organic matter stability and the temperature sensitivity of soil respiration

Burns, Nancy Rosalind January 2012 (has links)
Soil respiration is an important source of atmospheric CO2, with the potential for large positive feedbacks with global warming. The size of these feedbacks will depend on the relative sensitivity to temperature of very large global pools of highly stable soil organic matter (SOM), with residence times of centuries or longer. Conflicting evidence exists as to the relationships between temperature sensitivity of respiration and stability of SOM, as well as the temperature sensitivity of individual stabilisation mechanisms. This PhD considers the relationship between different stabilisation mechanisms and the temperature sensitivity of SOM decomposition. I used physical fractionation to isolate SOM pools with a variety of turnover rates, from decadal to centennially cycling SOM, in a peaty gley topsoil from Harwood Forest. Mean residence times of SOM as determined by 14C dating was most strongly affected by depth, providing stability on a millienial scale, while OM-mineral associations and physical protection of aggregates provided stability to around 500 years. Chemical characteristics of organic material in these fractions and whole soils (13C CP-MAS NMR spectroscopy, mass spectrometry, FTIR spectroscopy, thermogravimetric analysis, ICP-OES) indicated the relative contribution of different stabilisation mechanisms to the longevity of each of these fractions. Two long-term incubations of isolated physical fractions and soil horizons at different temperatures provided information about the actual resistance to decomposition in each SOM pool, as well as the temperature sensitivity of respiration from different pools. Naturally 13C-labelled labile substrate additions to the mineral and organic horizons compared the resistance to priming by labile and recalcitrant substrates. Manipulation of soil pore water was investigated as a method for isolating the respiration of SOM from physically occluded positions within the soil architecture. Contadictory lines of evidence emerged on the relative stability of different SOM pools from 14C dating, incubation experiments and chemical characterisation of indicators of stability. This led to the interpretation that physical aggregate protection primarily controls SOM stability within topsoils, while mineral and Fe oxide stability provides more lasting stability in the mineral horizon. Less humified and younger SOM was found to have a higher sensitivity to temperature than respiration from well-humified pools, in contrast to predictions from thermodynamics.
145

Impact of bromide, NOM, and prechlorination on haloamine formation, speciation, and decay during chloramination

Alsulaili, Abdalrahman D. 01 June 2010 (has links)
The Chlorine-Ammonia Process was developed recently as a preoxidation process to minimize the formation of bromate during ozonation of the waters containing a significant bromide concentration. Chlorine is added first, followed by ammonia 5-10 minutes later, with the goal of sequestering bromide in monobromamine before the subsequent ozonation step. The goal of this research was to improve the Chlorine-Ammonia Process by introducing a very short prechlorination step (i.e., 30 seconds before addition of ammonia) to minimize overall disinfection by-product formation. Also, in this strategy, formation of a powerful halogenating agent, HOBr, is minimized and bromochloramine (NHBrCl) is used predominantly instead of monobromamine to sequester bromide during ozonation. To support this improved approach to bromide sequestration, this study examined the formation and decay of bromochloramine as a function of operating conditions, such as pH and Cl2/N ratio, and refined a chemical kinetic model to predict haloamine concentrations over time. Two natural organic matter (NOM) sources were used in this study (Lake Austin, Texas and Claremore Lake, Oklahoma) to study the effect of NOM on monochloramine and total chlorine decay after 30 seconds of prechlorination. The rate of the reaction between haloamines and fast and slow sites on the NOM was estimated. A kinetics model was developed to model total chlorine decay after a short prechlorination time. The model is based on the Unified Haloamine Kinetic Model developed by Pope (2006). Pope`s model failed to model the initial monochloramine concentration after 30 seconds prechlorination time as well as the monochloramine and total chlorine decay over time. The modified model shows an excellent prediction of monochloramine and total chlorine decay after 30 seconds prechlorination time at pH range of 6.5-8.0 and over a carbonate buffer concentration range of 2-10 mM. The model includes a new bromochloramine decay scheme via the reaction with monochloramine and with itself. In addition, new rate constants for the reaction of HOCl with bromide ion and reaction of HOBr with monochloramine were added. The hypobromous acid formation rate was found to be an acid-catalyzed reaction, which confirms the finding of Kumar et al. (1987). A new value of the acid catalysis effect of hydrogen ion was estimated. New terms were introduced to the hyprobromous acid formation rate including the acid catalysis effect of bicarbonate, carbonic acid, and ammonium ion. In addition, the reaction of HOBr with monochloramine to form bromochloramine was found to be an acid-catalyzed reaction, and a new value of the rate constant was estimated. / text
146

Quantitative assessment of pore types and pore size distribution across thermal maturity, Eagle Ford Formation, South Texas

Pommer, Maxwell Elliott 09 September 2014 (has links)
Scanning electron microscopy of Ar-ion milled samples from the Eagle Ford Formation, South Texas shows that the character and abundance of porosity changes significantly across burial conditions as a result of compaction, cementation, bitumen generation, and generation of secondary porosity within organic matter (OM). Samples displaying a range of compositions and maturities are imaged and quantified to provide insight into the effects of these processes. Porosity in low-maturity samples (Ro~0.5%) is volumetrically dominated (0.1% -12.5% bulk volume, average 6.2%) by relatively large, mostly interparticle, primary mineral-associated pores (median sizes range 35.9-52.7 nm). Larger pores are generally associated with coccolith debris that is commonly aggregated into pellets. Porosity and pore size correlate directly with calcite abundance and inversely with OM volumes. OM is dominantly detrital kerogen "stringers" that range in size and have spatial distributions and character suggestive of detrital origin. Destruction of primary porosity in low-maturity samples has occurred due to compaction of ductile kerogen and clays and, to a minor degree, as a result of cementation and infill of early bitumen. Smaller, secondary OM-hosted pores (median size range 11.1-14.9 nm) volumetrically dominate porosity (0.02%-3.6% bulk volume, average of 1.36%), in most high-maturity samples (Ro~1.2%-1.3%). Mineral-associated pores are present, but are typically smaller (median size range from 20.3-40.6 nm) and less abundant (0.0%-10.0% bulk volume, average of 2.5%) than at low maturity. Abundant mineral-associated porosity is present locally in samples where incursion of primary pore space by bitumen has not occurred. OM within high-maturity samples is distributed more evenly throughout the rock fabric, occupying spaces similar in size and morphology to primary interparticle pores, coating euhedral crystals (probable cements), and filling intraparticle porosity. These observations, and positive correlation between calcite and OM volumes (OM-hosted pore volume included) in samples with dominantly OM-hosted pore networks, suggests that a large portion of OM within high-maturity samples is diagenetic in origin and has filled primary pore space. Destruction of primary porosity in high-maturity samples has occurred through cementation, bitumen infill, and, possibly greater compaction. Additional porosity, however, has been generated through maturation of OM. / text
147

Removal of inorganic and trace organic contaminants by electrodialysis

Banasiak, Laura Joan January 2010 (has links)
With the continual concern over the presence of naturally occurring and anthropogenic inorganic and trace organic contaminants in the aquatic environment there is a growing need for the implementation of innovative treatment processes for the elimination of these contaminants from natural waters and wastewater effluents. While conventional treatment methods are ineffective in the removal of emerging contaminants such as steroidal hormones and pesticides, membrane technology, including electrodialysis (ED), has been highlighted as a potential treatment option. However, the clear lack of fundamental understanding of the behaviour of contaminants in ED is a current limitation for its extensive utilisation and is a critical issue that needs to be addressed. ED processing potentialities have not been fully exploited and more research is needed to account for all the key parameters such as contaminant physicochemical properties, solution chemistry and the presence of organic matter. The purpose of this study was to elucidate the mechanisms of inorganic and trace organic contaminant removal by ED. The inorganic contaminants fluoride, nitrate and boron were selected due to their ubiquitous nature in the environment and public health concerns resulting from longterm exposure. The hydrated radius and strength of hydration shells played a significant role in ionic transport, whereby nitrate with a smaller hydrated radius was removed more effectively (94.1 %) than fluoride (68.3 %) with a larger hydrated radius. While fluoride and nitrate removal was pH independent, the pH dependent speciation of boron enhanced its removal with increasing pH. Territorial binding and/or complexation of the inorganics with organic matter enhanced removal. The removal of a range of trace inorganics (e.g. arsenic, calcium, magnesium, uranium) from a brackish groundwater from a remote Australian community was investigated. Undissociated inorganics were not transported through the membranes, whereas dissociated inorganics were due to electrostatic attraction. At acidic-neutral conditions ionic transport was the dominant removal mechanism. At neutral to alkaline conditions insoluble carbonate species precipitated and deposited as a membrane scaling layer (60 μm). This has serious implications for the long-term practical applicability of ED to treat real waters as scaling increased ED stack resistance (pH 3: 27.5 4, pH 11: 50 4) and decreased total dissolved solids removal (pH 3: 99 %, pH 11: 89.5 %). While the treatment of trace organics by other membrane processes has been widely studied, their fate in ED and interaction with ED membranes is relatively unknown. Trace contaminant-membrane interaction studies were undertaken to quantify the partitioning of trace organics; namely steroidal hormones and the pesticide endosulfan, to ED membranes by measuring membrane-water partition coefficients (log KM). The extremely high sorption capacity of the membranes was attributed to hydrogen bonding between the trace organic and membrane functional groups. Hormone sorption during ED was influenced by solution pH and organic matter. In the case of estrone, membrane sorption decreased at pH 11 (487 μg/cm3) compared to pH 7 (591 μg/cm3) due to dissociation and membrane electrostatic repulsion .At pH 11, repulsion between dissociated estrone and HA coupled with membrane electrostatic attraction resulted in increased sorption. The findings from this study highlight that the transport of trace contaminants will depend largely on the characteristics of the membranes used in the ED process as well as the physicochemical characteristics of the contaminants, their interaction with the ED membranes and the presence of other inorganic and/or organic compounds. The knowledge gained has direct applications to current problems and uncertainties in water and wastewater treatment with regards to the fate and transport of contaminants.
148

Soil Organic Matter Dynamics and Methane Fluxes at the Forest – Tundra Ecotone in Fennoscandia

Sjögersten, Sofie January 2003 (has links)
This thesis presents results from several studies that have focused on the carbon and nutrient dynamics in soils at the forest – tundra ecotone in Fennoscandia. The main objectives of the study were: (i) to investigate the links between the physical environment, above-ground vegetation communities, soil carbon storage, nutrient status and the chemical composition of the soil organic matter (SOM), and (ii) to quantify trace gas fluxes (methane and carbon dioxide) between mesic soils and the atmosphere. Four main field areas spanning an 8 degree latitudinal gradient were established at the ecotone in 1998 and studied for four years. In addition to the natural gradients we also established a warming treatment. Decomposition rates (i.e. carbon dioxide efflux and litter decomposition) were higher at our forest sites. This was linked principally to the more favourable physical environment at the forest sites, rather than to SOM quality, despite some indications of higher SOM quality at forest sites based upon conventional chemical analysis and 13C NMR techniques. Tundra soils stored large amounts of potentially labile carbon that could readily be accessed by microorganisms when transferred to a forest environment. The interrelation between increased soil temperature and reduced soil moisture content is likely to moderate the response of decomposition rates to increased temperatures. Generally, these mesic soils showed net methane uptake from the atmosphere, which was enhanced by the warming treatment. No differences between forest or tundra soils could be detected. The major conclusions presented here are that (1) soil carbon storage is likely to be reduced if mountain birch forest replaces tundra heath and (2), methane uptake in mesic soils in the Fennoscandian mountains represents a negative feedback to further environmental change in a warmer climate.
149

The Forest Fire in Västmanland, South Central Sweden, and its Effects on Soils and Forest Recovery / Skogsbranden i Västmanland, sydvästra Sverige, och dess inverkan på markegenskaper och skogens återhämtning

Sjödin, Sophia January 2016 (has links)
Forest fires can have a great impact on the relationship between soil organic matter (SOM) and soilbulk density (SBD). SOM will reduce with increased fire intensity, which ultimately leads to more compaction of the soil. The compaction rate might increase to the limit of where root growth will be absent thus leading to actions to restore the soil. This study investigates changes in the relationship between SOM and SBD in spodosol and histosol in Seglingsberg, located in South-central Sweden, where a forest fire occurred summer 2014.  In addition, changes of pH values in the two types of soilwere examined in order to receive information about the chemical states of the different soil types.A total of 29 samples at depths of 0-17 cm were received from one day of fieldwork and these were later analysed concerning the pH, the SBD and the SOM content. The results showed an increase of pH-values in the fire-exposed area compared to pH values measured at the reference site (pH ~5). More importantly, the results from the SBD and SOM analyses indicated that there was in fact an inversely proportional relationship between the two soil parameters. In addition, high pH values were measured at the same subareas of which the highest SBD- and the lowest SOM values were obtained.Statistical analyses were applied on the results in order to conclude if the soil property changes caused by the fire were significantly different from normal conditions or not. The results from the statistical analyses revealed that 25% of the fire-exposed sites had changed significantly. However, more samples should have been taken while in field, since lack of data is thought to have had a great impact on the final results.Although there were no strong statistical evidence for the hypothesis, it is clear that the forest firein Västmanland year 2014 affected both the SOM, SBD and pH values in the soils. / Under sommaren år 2014 utbröt en omfattande skogsbrand i Västmanlands län, vilket medföljdedramatiska konsekvenser för framförallt ett flertal skogsbolag, men även för boende i området. Med skogsbränder följer negativa såväl som positiva konsekvenser, där de positiva framförallt gäller med avseende på arter som har evolverat i samband med bränder. Förutom ovannämnda konsekvenser så finns det risk för att markförhållandena ändras till följd av en skogsbrand. I denna studie undersöktes hur  markegenskaper  i  torv-  samt  podsoljordar  hade  förändrats  med  avseende  på  pH,  halten  avorganiskt material samt packningsgrad. Fältstudien genomfördes i ett drabbat brandområde strax norrom Seglingsberg, Surahammars kommun. Totalt togs 29 stycken jordprover inom fem stycken transekter i området. Av dessa kunde 25 stycken användas till alla tre analyserna. Resultaten från jordprovsanalyserna användes därefter till att genomföra statistiska undersökningar. Detta för att se hur stor spridningen var mellan och inom de fem transekterna samt för att kunna avgöra om jordproverna visade sig vara signifikant förändrade från ursprungsförhållanden.Resultaten från jordprovsanalyserna visade att det fanns mest organiskt material kvar i de östra delarna av området, medan det var kraftigt reducerat ju längre nordväst jordproverna hade hämtats. I samband med att markens organiska material hade reducerats kunde man även bevittna att jordtäcket hade blivit mer kompakterat. Resultaten från pH-analysen pekar också på att förändringarna varit som störst i de nordvästliga delarna. pH-analysen bevisade att markkemin ser annorlunda ut än innanbranden, då värdena ibland låg 2 enheter för högt än vad man vanligen brukar observera i podsol- ochtorvjordar. Då pH-skalan är logaritmisk innebär detta en minskad försurning med 100 gånger. Resultaten från alla jordprovsanalyser tyder att branden varit som mest intensiv i den nordvästra delen av undersökningsområdet, i området bestående av ungskog.Även om resultaten från jordprovsanalyserna pekade på att branden orsakat tydliga mark- förändringar, visade majoriteten av de statistiska undersökningarna inte på signifikanta förändringar. Det är därför inte möjligt att generalisera resultaten och således applicera dessa på hela brandområdet i Västmanland.Eftersom att naturligt förekommande skogsbränder är relativt få till antalet i Sverige, finns därmed få studier tillgängliga inom ämnesområdet. Det finns en upplaga av studier inom kontrollerade och anlagda brandfält, men i och med att dessa förhållanden är fixerade, så påverkas markegenskaperna sällan avsevärt. Forskningsrapporter indikerar på ett mer extremt klimat i framtiden, som förmodas leda till en ökad omfattning samt ett ökat antal naturligt förekommande skogsbränder. Om denna prognos stämmer är det viktigt att undersöka markförhållandena, då en skogsbrand kan ha direktavgörande effekt på återväxten.
150

Quantitative Chemical Analysis of the Soils of Erath County, Texas

Barnes, Benjamin F. 06 1900 (has links)
A chemical analysis of representative samples of Windthorst sand, Denton sand, and Denton clay has been made, and this analysis shows that their composition has a strict correlation with respect to their geological origins. The analyses of the different soils have shown the Windthorst sand to be highly deficient in all of the essential elements, whereas the Denton sand is deficient in only one; namely, phosphorus. The analysis of the Denton clay showed it to be highly fertile. From the consideration of the pH and the lime content, it has been determined to some extent what crops will grow in each of the soils.

Page generated in 0.0618 seconds