• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultra-thin Ceramic Films for Low-temperature Temperature Embedding of Decoupling Capacitors into Organic Printed Wiring Boards

Balaraman, Devarajan 27 October 2005 (has links)
As microprocessors move towards higher frequencies, lower operating voltages and higher power consumption, supplying noise-free power to the ICs becomes increasingly challenging. Decoupling capacitors with low inductance interconnections are critical to meet the power supply impedance targets. A variety of capacitors are used today to provide decoupling at different frequencies. Surface-mount multi-layer ceramic capacitors currently used at package level provide decoupling only till about 100 MHz because of the component and lead inductances. Embedding thin film capacitors into the package can expand the operating range of package level capacitors to low GHz frequencies. Thin films with capacitance of several microfarads and organic-compatible processes are required for embedding decoupling capacitors at package level. The organic-compatible high-permittivity materials available today do not provide adequate capacitance for the application on hand. While ferroelectric thin films can provide the required capacitance, processing temperatures over 300o C are required to achieve crystalline films with high permittivity. Hence, there is a need to develop novel materials and processes to integrate decoupling capacitors into currently prevalent organic packages. To this end, hydrothermal synthesis and sol-gel synthesis of BaTiO3 films were explored in this study. BaTiO3 films were synthesized by low temperature hydrothermal conversion of metallic titanium. Hydrothermal process parameters such as bath molarity and temperature were optimized to obtain thin films with grain sizes close to 100 nm, at temperatures less than 100o C. Novel post-hydrothermal treatments were developed to improve the dielectric properties of the films. Sol-gel process requires sintering at >700o C to obtain crystalline BaTiO3 films. However, the films can be synthesized on free-standing copper foils and subsequently integrated into organic packages using lamination. Prevention of foil oxidation during sintering is critical. Nickel and titanium barriers explored in this study were ineffective due to instabilities at the interfaces. Hence, films were synthesized on bare copper foils by controlling the oxygen partial pressure during sintering. Using these techniques BaTiO3 thin films with capacitances of 400 1000 nF/cm2 and breakdown voltages of 6 15 V were demonstrated. The films synthesized via either techniques exhibited stable dielectric properties up to 8 GHz owing to fine grain sizes.
2

Electromagnetic coupling in multilayer thin-film organic packages with chip-last embedded actives

Sankaran, Nithya 21 March 2011 (has links)
The demands of consumer electronic products to support multi-functionality such as computing, communication and multimedia applications with reduced form factor and low cost is the driving force behind packaging technologies such as System on Package (SOP). SOP aims to enhance the functionality of the package while providing form factor reduction by the integration of active and passive components. However, embedding components within mixed signal packages causes unwanted interferences across the digital and analog-radio frequency (RF) sections of the package, which is a major challenge yet to be addressed. This dissertation focused on the chip-last method of embedding chips within cavities in organic packages and addressed the challenges for preserving power integrity in such packages. The challenges associated with electromagnetic coupling in packages when chips are embedded within the substrate layers are identified, analyzed and demonstrated. The presence of the chip embedded within the package introduces new interaction mechanisms between the chip and package that have not been encountered in conventional packages with surface mounted chips. It is of significant importance to understand the chip-package interaction mechanisms, for ensuring satisfactory design of systems with embedded actives. The influence of the electromagnetic coupling from the package on the bulk substrate and bond-pads of the embedded chip are demonstrated. Solutions that remedy the noise coupling using Electromagnetic Band-Gap structures (EBGs) along with design methodologies for their efficient implementation in multilayer packages are proposed. This dissertation presents guidelines for designing efficient power distribution networks in multilayer packages with embedded chips.

Page generated in 0.0401 seconds