Spelling suggestions: "subject:"organisk"" "subject:"organiska""
251 |
Palladium(II)-Catalyzed Oxidative Carbocyclization : Stereoselective Formation of C–C and C–B BondsJiang, Tuo January 2014 (has links)
Transition metal catalysis has emerged as one of the most versatile methods for the selective formation of carbon–carbon and carbon–heteroatom bonds. In particular, oxidative carbon–carbon bond forming reactions have been widely studied due to their atom economic feature. This thesis has been focused on the development of new palladium(II)-catalyzed carbocyclization reactions under oxidative conditions. The first part of the thesis describes the palladium(II)-catalyzed oxidative carbocyclization-borylation and -arylation of enallenes. In these reactions, the (σ-alkyl)palladium(II) intermediate, which was shown previously to undergo β-hydride elimination, could be trapped in situ by organoboron reagents (B2pin2 and arylboronic acids) to form new carbon–boron and carbon–carbon bonds. Through these two protocols, a range of borylated and arylated carbocycles were obtained as single diastereomers in high yields. The second part deals with a palladium(II)-catalyzed oxidative diarylative carbocyclization of enynes. The reaction was proposed to start with a syn-arylpalladation of an alkyne, followed by insertion of the coordinated alkene. Subsequent arylation afforded a series of valuable diarylated tetrahydrofuran and tetrahydropyran products. The final part of the thesis advances the previously developed palladium(II)-catalyzed oxidative carbocyclization-borylation of enallenes in an enantioselective manner. C2-symmetric chiral phosphoric acids were used as the novel co-catalyst to trigger the enantioselective formation of intramolecular carbon–carbon bonds. By using this chiral anion strategy, a number of enallenes were converted to the borylated carbocycles with high to excellent enantioselectivity. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
|
252 |
Synthesis of proteophenes that can be utilized as fluorescent ligands for biological targetsBjörk, Linnea January 2019 (has links)
Small fluorescent probes are important tools when studying protein aggregates involved in different neurodegenerative diseases, such as Alzheimer’s disease. Luminescent conjugated oligothiophenes have been developed and shown to be excellent ligands when studying morphology among amyloids, due to their conjugated thiophene backbone that provides them with unique photophysical properties. This kind of probes are being developed successively to enhance the specificity of their biological targets. In this project, luminescent conjugated oligothiophenes functionalized with amino acids, so called proteophenes, have been synthesized to investigate their optical properties. Since amino acids are chiral molecules, the possibility of induced chirality to the thiophene backbone was examined, as well as the proteophenes ability to work as amyloidospecific ligands for the study of protein aggregates. The synthesis of four different proteophenes are presented in this report, along with analysis results of their photophysical properties.
|
253 |
Synthesis and Photoinduced Electron Transfer of Donor-Sensitizer-Acceptor SystemsXu, Yunhua January 2005 (has links)
<p>Artificial systems involving water oxidation and solar cells are promising ways for the conversion of solar energy into fuels and electricity. These systems usually consist of a photosensitizer, an electron donor and / or an electron acceptor. This thesis deals with the synthesis and photoinduced electron transfer of several donor-sensitizer-acceptor supramolecular systems.</p><p>The first part of this thesis describes the synthesis and properties of two novel dinuclear ruthenium complexes as electron donors to mimic the donor side reaction of Photosystem II. These two Ru<sub>2</sub> complexes were then covalently linked to ruthenium trisbipyridine and the properties of the resulting trinuclear complexes were studied by cyclic voltammetry and transient absorption spectroscopy.</p><p>The second part presents the synthesis and photoinduced electron transfer of covalently linked donor-sensitizer supramolecular systems in the presence of TiO<sub>2</sub> as electron acceptors. Electron donors are tyrosine, phenol and their derivatives, and dinuclear ruthenium complexes. Intramolecular electron transfer from the donor to the oxidized sensitizer was observed by transient absorption spectroscopy after light excitation of the Ru(bpy)<sub>3</sub><sup>2+</sup> moiety. The potential applications of Ru<sub>2</sub>-based electron donors in artificial systems for water oxidation and solar cells are discussed.</p><p>In the final part, the photoinduced interfacial electron transfer in the systems based on carotenoids and TiO<sub>2</sub> is studied. Carotenoids are shown to act as both sensitizers and electron donors, which could be used in artificial systems to mimic the electron transfer chain in natural photosynthesis.</p>
|
254 |
Efficient and High-Yielding Routes to Diaryliodonium SaltsBielawski, Marcin January 2008 (has links)
<p>This thesis summarizes three novel and general reaction protocols for the synthesis of diaryliodonium salts. All protocols utilize mCPBA as oxidant and the acids used are either TfOH, to obtain triflate salts, or BF3•Et2O that gives the corresponding tetrafluoroborate salts in situ.</p><p>Chapter two describes the reaction of various arenes and aryl iodides, delivering electron-rich and electron-deficient triflates in moderate to excellent yields.</p><p>In chapter three, it is shown that the need of aryl iodides can be circumvented, as molecular iodine can be used together with arenes in a direct one-pot, three-step synthesis of symmetric diaryliodonium triflates.</p><p>The final and fourth chapter describes the development of a sequential one-pot reaction from aryl iodides and boronic acids, delivering symmetric and unsymmetric, electron-rich and electron-deficient iodonium tetrafluoroborates in moderate to excellent yields. This protocol was developed to overcome mechanistic limitations existing in the protocols described in chapter two and three.</p><p>The methodology described in this thesis is the most general, efficient and high-yielding existing up to date, making diaryliodonium salts easily available for various applications in synthesis.</p>
|
255 |
Synthesis and functionalization of ring-fused 2-pyridones : Targeting pili formation in <i>E. coli</i>Pemberton, Nils January 2007 (has links)
<p>Bicyclic dihydrothiazolo fused 2-pyridones have been studied as a new class of antibacterial agents, termed pilicides, that target the formation of adhesive bacterial surface organelles (pili) in pathogenic bacteria. Synthetic methods to further functionalize the bicyclic 2-pyridone scaffold have been developed in order to increase water-solubility and thereby facilitate biological evalua-tions. This was accomplished by introducing aminomethylenes at the open position C-6. Tertiary amines were introduced via a microwave–assisted Mannich reaction and a synthetic route based on a formyl intermediate gave access to primary, secondary and tertiary amines, but also to other interesting functionalities. Biological evaluation confirmed that several of the function-alized compounds inhibited pili formation in uropathogenic <i>E. coli</i>., as dem-onstrated by assays of hemagglutination, biofilm formation and adherence to bladder cells. Co-crystallizing one of the pilicides with the target protein gave information about the binding site and based on this a mechanism of action was proposed, which was supported experimentally by surface plas-mon resonance and single point mutations in the protein.</p><p>Furthermore, the previously developed acylketene imine reaction used to prepare bicyclic thiazolo fused 2-pyridone pilicides has been developed to allow preparation of other ring-fused 2-pyridone systems. Benzo[a]quinolizine-4-ones and indolo[2,3-a]quinolizine-4-ones could be prepared in a fast and simple manner starting from dihydroisoquinolines and a β-carboline. Finally, this method could also be applied for the preparation of heteroatom analogs of the previously studied sulfur containing pilicides. Biological evaluations established that the sulfur atom can be replaced by oxygen and still maintain the ability to prevent pili assembly.</p>
|
256 |
Design and Synthesis of Serine and Aspartic Protease InhibitorsWångsell, Fredrik January 2006 (has links)
<p>This thesis describes the design and synthesis of compounds that are</p><p>intended to inhibit serine and aspartic proteases. The first part of the text deals with preparation of inhibitors of the hepatitis C virus (HCV) NS3 serine protease. Hepatitis C is predominantly a chronic disease that afflicts about 170 million people worldwide. The NS3 protease, encoded by HCV, is essential for replication of the virus and has become one of the main targets when developing drugs to fight HCV. The inhibitors discussed here constitute surrogates for the widely used <em>N</em>-acyl-hydroxyproline isostere designated 4-hydroxy-cyclopentene. The stereochemistry of the 4-hydroxy-cyclopentene scaffold was determined by nuclear overhauser effect spectroscopy (NOESY) and the regiochemistry by heteronuclear multiple bond correlation (HMBC). The scaffold was decorated with different substituents to obtain both linear and macrocyclic HCV NS3 protease inhibitors that display low nanomolar activity. The second part of the thesis describes the design and synthesis of potential aspartic protease inhibitors. The hydroxyethylene motif was used as a noncleavable transition state isostere. The synthetic route yielded a pivotal intermediate with excellent stereochemical control, which was corroborated by NOESY experiments. This intermediate can be diversified with different substituents to furnish novel aspartic protease inhibitors.</p> / Report code: LIU-TEK-LIC-2006:45
|
257 |
Glycoconjugates : Solid-phase synthesis and biological applicationsWallner, Fredrik January 2005 (has links)
<p>Glycoconjugates are biologically important molecules with diverse functions. They consist of carbohydrates of varying size and complexity, attached to a non-sugar moiety as a lipid or a protein. Glycoconjugate structures are often very complex and their intricate biosynthetic pathways makes overexpression difficult. This renders the isolation of pure, structurally defined compounds from natural sources cumbersome. Therefore, to better address questions in glycobiology, synthetic glycoconjugates are an appealing alternative. In addition, synthetic methods allow for the preparation of non-natural glycoconjugates that can enhance the understanding of the influence of structural features on the biological responses.</p><p>In this thesis, synthetic methods for the preparation of glycoconjugates, especially glycolipid analogues, have been developed. These methods make use of solid-phase chemistry and are amenable to library synthesis of series of similar compounds. Solid-phase synthesis is a technique where the starting material of the reaction is attached to small plastic beads through a linker. This allows large excess of reagents to speed up the reactions and the sometimes difficult purifications of intermediate products are reduced to simple washings of the beads.</p><p>One problem with solid-phase synthesis is the difficulties to monitor the reactions and characterize the intermediate products. Gel-phase 19 F-NMR spectroscopy, using fluorinated linkers and protecting groups, is an excellent tool to overcome this problem and to monitor solid-phase synthesis of e.g. glycoconjugates. Two novel fluorinated linkers for the attachment of carboxylic acids have been developed and are presented in the thesis. These linkers can be cleaved with both acids of varying strengths and nucleophiles like hydroxide ions, and they are stable to glycosylation conditions. In addition, a novel filter reactor for solid-phase synthesis was designed. The reactor fits into an ordinary NMR spectrometer to facilitate the reaction monitoring with gel-phase 19 F-NMR spectroscopy.</p><p>The biological applications of the synthesized glycolipids were demonstrated in two different settings. The CD1d restricted binding of glycolipids carrying the monosaccharide α-GalNAc as carbohydrate could be detected on viable cells of mouse origin. CD1d is one of several antigen presenting molecules (the CD1 proteins) that presents lipids and glycolipids to circulating T-cells that in turn can initiate an immune response. The CD1 molecules are relatively sparsely investigated, and the method to measure glycolipid binding on viable cells, as described in the thesis, has the possibility to greatly enhance the knowledge of the structural requirements for CD1-binding.</p><p>Serine-based neoglycolipids with terminal carboxylic acids were used to prepare glycoconjugate arrays with covalent bonds to secondary amines on microtiter plates. Carbohydrate arrays have great possibilities to simplify the study of interactions between carbohydrates and e.g. proteins and microbes. The usefulness of the glycolipid arrays constructed in the thesis was illustrated with two lectins, RCA120 from Ricinus communis and BS-1 from Bandeiraea simplicifolia. Both lectins bound to the array of neoglycolipids in agreement with their respective specificity for galactosides.</p><p>Glycobiology is a large area of great interest and the methods described in this thesis can be used to answer a variety of glycoconjugaterelated biological questions.</p>
|
258 |
Synthesis of <sup>11</sup>C-labelled Alkyl Iodides : Using Non-thermal Plasma and Palladium-mediated Carbonylation MethodsEriksson, Jonas January 2006 (has links)
<p>Compounds labelled with <sup>11</sup>C (<i>β</i><sup>+</sup>, t<sub>1/2</sub> = 20.4 min) are used in positron emission tomography (PET), which is a quantitative non-invasive molecular imaging technique. It utilizes computerized reconstruction methods to produce time-resolved images of the radioactivity distribution in living subjects. </p><p>The feasibility of preparing [<sup>11</sup>C]methyl iodide from [<sup>11</sup>C]methane and iodine via a single pass through a non-thermal plasma reactor was explored. [<sup>11</sup>C]Methyl iodide with a specific radioactivity of 412 ± 32 GBq/µmol was obtained in 13 ± 3% decay-corrected radiochemical yield within 6 min via catalytic hydrogenation of [<sup>11</sup>C]carbon dioxide (24 GBq) and subsequent iodination, induced by electron impact. </p><p>Labelled ethyl-, propyl- and butyl iodide was synthesized, within 15 min, via palladium-mediated carbonylation using [<sup>11</sup>C]carbon monoxide. The carbonylation products, labelled carboxylic acids, esters and aldehydes, were reduced to their corresponding alcohols and converted to alkyl iodides. [1-<sup>11</sup>C]Ethyl iodide was obtained via palladium-mediated carbonylation of methyl iodide with a decay-corrected radiochemical yield of 55 ± 5%. [1-<sup>11</sup>C]Propyl iodide and [1-<sup>11</sup>C]butyl iodide were synthesized via the hydroformylation of ethene and propene with decay-corrected radiochemical yields of 58 ± 4% and 34 ± 2%, respectively. [1-<sup>11</sup>C]Ethyl iodide was obtained with a specific radioactivity of 84 GBq/mmol from 10 GBq of [<sup>11</sup>C]carbon monoxide. [1-<sup>11</sup>C]Propyl iodide was synthesized with a specific radioactivity of 270 GBq/mmol from 12 GBq and [1-<sup>11</sup>C]butyl iodide with 146 GBq/mmol from 8 GBq. </p><p>Palladium-mediated hydroxycarbonylation of acetylene was used in the synthesis of [1-<sup>11</sup>C]acrylic acid. The labelled carboxylic acid was converted to its acid chloride and subsequently treated with amine to yield <i>N-</i>[<i>carbonyl</i>-<sup>11</sup>C]benzylacrylamide. In an alternative method, [<i>carbonyl</i>-<sup>11</sup>C]acrylamides were synthesized in decay-corrected radiochemical yields up to 81% via palladium-mediated carbonylative cross-coupling of vinyl halides and amines. Starting from 10 ± 0.5 GBq of [<sup>11</sup>C]carbon monoxide, <i>N-</i>[<i>carbonyl</i>-<sup>11</sup>C]benzylacrylamide was obtained in 4 min with a specific radioactivity of 330 ± 4 GBq/µmol. </p>
|
259 |
Heavy-Core Staffanes : A Computational Study of Their Fundamental Properties of Interest for Molecular ElectronicsSandström, Niclas January 2007 (has links)
<p>The basic building blocks in molecular electronics often correspond to conjugated molecules. A compound class consisting of rigid rod-like staffane molecules with the heavier Group 14 elements Si, Ge, Sn and Pb at their bridgehead positions has now been investigated. Herein these oligomers are called heavy-core or Si-, Ge-, Sn- or Pb-core staffanes. These compounds benefit from interaction through their bicyclo[1.1.1]pentane monomer units. Quantum chemical calculations were performed to probe their geometries, stabilities and electronic properties associated with conjugation.</p><p>The stabilities of the bicyclo[<i>n.n.n</i>]alkane and [<i>n.n.n</i>]propellanes (1 ≤ <i>n</i> ≤ 3) with C, Si, Ge and Sn at the bridgehead positions were studied by calculation of homodesmotic ring strain energies. The bicyclic compounds with <i>n</i> = 1 and Si, Ge or Sn at bridgehead positions have lower strain than the all-carbon compound.</p><p>A gradually higher polarizability exaltation is found as the bridgehead element is changed from C to Si, Ge, Sn or Pb. The ratio between longitudinal and average polarizability also increases gradually as Group 14 is descended, consistent with enhanced conjugation in the heavier oligomers.</p><p>The localization of polarons in C-, Si- and Sn-core staffane radical cations was calculated along with internal reorganization energies. The polaron is less localized in Si- and Sn-core than in C-core staffane radical cation. The reorganization energies are also lower for the heavier staffanes, facilitating hole mobility when compared to the C-core staffanes.</p><p>The effect of the bicyclic structure on the low valence excitations in the UV-spectra of compounds with two connected disilyl segments was also investigated. MS-CASPT2 calculations of 1,4-disilyl- and 1,4-bis(trimethylsilyl)-1,4-disilabicyclo[2.2.1]heptanes and 1,4-disilyl- and 1,4-bis(trimethylsilyl)-1,4-disilabicyclo[2.1.1]hexanes revealed that although the bicyclic cage separates the two disilyl chromophores, there is a strong red-shift of the lowest valence excitations when compared to an isolated disilane.</p>
|
260 |
Towards Rational Design of Asymmetric Catalyst for Organometallic and Organocatalytic ReactionsHartikka, Antti January 2007 (has links)
<p>This thesis deals with synthetically modified chiral molecules and their application in asymmetric catalysis. The first part of the thesis describes the use of commercially available chiral diamine ligands in the iridium catalyzed transfer hydrogenation of aromatic ketones. The chiral diamine ligands were mixed with an appropriate transition-metal complex, which after addition of suitable base provided a chiral transition metal complex capable of reducing a range of different aromatic ketones in high yields and enantioselectivities. The developed methodology constitutes a cost effective and readily available procedure for transfer hydrogenation reactions. The following chapters in the thesis are completely devoted to rational design of small organic molecules acting as catalyst in various organocatalytic transformations. Organocatalytic methodology, represent a new and complementary approach to asymmetric organic synthesis, as compared to e.g. transition metal based methodology. Advantages of this methodology typically include mild and less stringent reaction conditions. This, in combination with the lack of toxic transition metal by-products, makes the process more environmentally benign; the organocatalytic methodology, therefore represent a promising approach towards implementation of green chemistry in organic synthesis. Despite this promise, typical drawbacks of the current methodology are long reaction times and the need for high catalyst loadings. Thus, a large demand exists for enhancing reactivity and increasing selectivity in organocatalytic reactions. The present thesis describes several efforts where we have tried to rationally design improved catalysts for various enantioselective organocata-lytic reactions. First, a structurally modified L-proline, incorporating a 1H-tetrazolic acid, was synthesized and evaluated in the direct asymmetric organocatalytic aldol reaction. As shown in Paper II, the catalyst displayed very high reactivity and subsequent studies were initiated in order to rationalize the reactivity enhancement (Paper III). Delightfully, the design principle of a 1H-tetrazolic acid as replacement for a carboxylic acid has since been widely used in the community, including our own efforts in organocatalytic asymmetric cyclopropanations (Paper V)and Diels-Alder reactions (Paper VII). Novel catalysts, including other functionalizations, were also designed for organocatalytic asymmetric addition of nitroalkanes to α,β-unsaturated aldehydes (Paper IV) and for cyclopropanations (Paper VI).</p>
|
Page generated in 0.0501 seconds