Spelling suggestions: "subject:"organoclay"" "subject:"organoclays""
31 |
Preparation Of Clay-polymer Nanocomposite For The Retardation Of Waste Water Infiltration In Landfill SitesBildiren, Mert 01 September 2007 (has links) (PDF)
In this thesis study, the use of clay-polymer nanocomposites for their
applicability in landfill sites as a product of retardation of waste water infiltration
was evaluated. For this purpose, organophilic clays from HDTMA+ organic cation
and nanocomposites of montmorillonite were prepared. The bentonite samples B1,
B2 and B3 dominantly contain 2:1 layer montmorillonite and 1:1 interstratification of
illite/smectite mixed layer as clay minerals. B1 is an unmodified yellow bentonite
and B2 is a grey bentonite modified from B1, by the addition of Na2CO3 (Soda Ash).
They were obtained from Hanç / ili (Kalecik-Ankara) bentonite deposit which belongs
to the Hancili Formation of Early Pliocene age. B3 is a standard Wyoming (SWy-1)
white bentonite and belongs to the Newcastle formation of Cretaceous age.
Their cation exchange and swelling capacity values were determined and the
values increase from B1, B2 to B3. In order to produce clay-polymer
nanocomposites, firstly organoclays were produced in bentonite samples. Claypolymer
nanocomposite production was achieved by in situ intercalative
polymerization successfully with intercalation and partly exfoliation of clay minerals
with polyacrylamide (PAM). The samples of sand (S1), sand+bentonite (S2) and
sand+nanocomposite (S3) mixtures were prepared and their permeability was
determined. As a result of these values, the permeability of samples decrease from
S1, S2 to S3.
The results imply that the permeability of sample decreases as the claypolymer
nanocomposite content increases resulting in a retardation of water
penetration throughout the sample. The product has a potential to be used as a
retardant for waste water infiltration in landfill sites.
|
32 |
Preparation And Characterization Of Recycled Polypropylene Based NanocompositesCengiz, Filiz 01 September 2008 (has links) (PDF)
The aim of this study was to improve the mechanical properties of a recycled grade
polypropylene. Polymer blends and nanocomposites were prepared by melt
compounding method in a twin screw extruder. Cloisite® / 15A, Cloisite® / 25A and
Cloisite® / 30B were used as organoclays, and ethylene-methyl acrylate-glycidyl
methacrylate (E-MA-GMA) and maleic anhydride grafted polypropylene (PP-MAH)
were used as compatibilizers. The effects of additive concentrations, types of
organoclays and compatibilizers, processing conditions, and the compatibilizer to
organoclay ratio on the morphology and mechanical, thermal and flow properties
were investigated.
Organoclay loading over 2 wt% prevented the intercalation mechanism and material
properties, even in the presence of compatibilizer, as a consequence of large clay
agglomerate formation. E-MA-GMA compatibilizer improved the intercalation ability of
the polymer / however a substantial increase in mechanical properties was not
obtained. PP-MAH is found to be a better compatibilizer.
Processing conditions significantly affected both mechanical properties and
morphology. When the processing temperature was decreased and screw speed was
increased simultaneously, tensile and impact properties were improved owing to
enhanced shear and dispersive forces.
TEM analysis revealed that intercalated and delaminated structures were formed with
the addition of PP-MAH compatibilizer. In addition to that, as the ratio of PP-MAH to
organoclay was increased, more effective dispersion of organoclay was observed
and hence resultant improvements in both tensile and impact properties were greater
at compatibilizer to organoclay ratio of three.
Cloisite® / 15A exhibited the highest improvements in mechanical properties, although
the degree of organoclay dispersion was better for Cloisite® / 25A and particularly for
Cloisite® / 30B. Melt flow index values were lower compared to pure recycled
polypropylene in the presence of organoclay and compatibilizers. DSC analysis
indicated no significant change in the melting behavior of the matrix materials.
|
33 |
Impact Modified Polystyrene Based NanocompositesYeniova, Canan Esma 01 January 2009 (has links) (PDF)
Polystyrene, PS, is a preferable polymer in industry, but, its brittle characteristic restricts its utilization. The aim of this study is to improve the impact strength of PS by the help of elastomeric materials SEBS-g-MA and E-BA-GMA. In order to prevent the reduction in the tensile strength of the materials, three different types of organic montmorillonites, MMT, (Cloisite® / 30B, 25A and 15A) were used as fillers. Nanocomposite preparation was performed in a co-rotating twin screw extruder.
Initially elastomer and organoclay contents were kept at 5wt% and 1-2wt% respectively. Well dispersed silicate layers were obtained for the nanocomposite containing SEBS-g-MA and Cloisite® / 25A owing to the high viscosity of SEBS-g-MA and the solubility of polystyrene end block of SEBS with PS matrix. Owing to higher hydrophobicity of Cloisite® / 15A a better dispersion was expected compared to Cloisite® / 25A, but, it was concluded that two long aliphatic tails of Cloisite® / 15A limited the access of polymer chains to the clay surface. The desired impact strength values could not be achieved by using 5wt% elastomeric materials / therefore, it was decided to increase the SEBS-g-MA content up to 15, 20, 30 and 40wt%.
With increasing elastomer content, increasing average elastomer domain size was obtained. Also, it was observed that with the addition of organoclay, the elastomeric domain size increases since the clay particles reside in the elastomer phase and at the interphase between elastomer and PS. The mechanical test results showed that the nanocomposites containing 15 and 20wt% SEBS-g-MA have the optimum average domain size that results in better impact strength values without deteriorating tensile properties.
|
34 |
Nanocomposites Based On Blends Of PolystyreneDike, Ali Sinan 01 June 2011 (has links) (PDF)
Due to brittleness of polystyrene, PS, its usage area is restricted. To solve this problem and expand the usage area of PS, it can be blended and impact modified with an elastomeric material. In this study, the decrease in the modulus and tensile strength imparted by impact modification was overcome by reinforcing this mixture by incorporating organoclays and producing nanocomposites.
This study consists of two parts. In the first part of this study three different types of aliphatic elastomeric materials and three different types of organoclays were used and their effects on the morphology, mechanical, thermal, and rheological properties of PS were investigated. Lotader AX8900, Lotader AX8840 and Lotader 2210 were chosen as the aliphatic elastomeric compatibilizers / and Cloisite
|
35 |
Synthesis and application of dendrimers on solid supportsAcosta Otero, Erick J. 17 February 2005 (has links)
The synthesis, characterization and application of dendrimers on solid supports are described. Melamine-based dendrimers are incorporated on clay minerals and silica gel. The hybrid materials are characterized using a variety of analytical techniques including thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS). The first chapter gives an overview of the two main methods, convergent and divergent, for the synthesis of dendrimers. It also describes the synthesis of melamine-based dendrimers and their advantages over conventional dendrimers. Synthetic strategies and applications of dendrimers at surfaces are discussed. The preparation of organoclay materials containing dendritic surfactants is presented in the second chapter. The morphology of these organoclays is studied by X-ray powder diffraction (XPD). A new type of morphology is observed when large dendritic surfactants are incorporated onto the clay. This new morphology is described as frustrated intercalation. The ability of the dendritic organoclay composites to recognize small organic molecules in water is presented in the third chapter. Atrazine, a commonly used herbicide, is used as a model compound. Structure-activity relationship studies were conducted in order to gain some insight on the recognition and sequestration mechanisms. In the fourth chapter, reactive resins are evaluated for the covalent sequestration of monochlorotriazines from organic and aqueous solutions. The sequestration is monitored spectrophotometrically and using liquid chromatography coupled to a mass spectrometer (LC-MS). 1H NMR spectroscopy and MS are used to identify the covalent adducts formed between the monochlorotriazines and the resins. The efficiency of the resin is compared to several types of charcoal using aqueous solutions of atrazine. The final chapter describes the attachment of melamine-based dendrimers onto silica gels. Dendrimers are incorporated to the silica gel surface using two synthetic strategies, the stepwise growth strategy (SGS) and the "attach-to" strategy (ATS). These composites are also evaluated for their ability to remove atrazine from aqueous solutions.
|
36 |
Treatment of Oilfield Produced Water with Dissolved Air FlotationJaji, Kehinde Temitope 08 August 2012 (has links)
Produced water is one of the major by products of oil and gas exploitation which is produced in large amounts up to 80% of the waste stream. Oil and grease concentration in produced water is the key parameter that is used for compliance monitoring, because it is easy to measure. For Canadian offshore operations, the current standard is a 30-day volume weighted average oil-in-water concentration in discharged produced water not exceeding 30 mg/L. Treatment of produced water may therefore be required in order to meet pre-disposal regulatory limits. The measurement of oil in produced water is important for both process control and reporting to regulatory authorities. Without the specification of a method, reported concentrations of oil in produced water can mean little, as there are many techniques and methods available for making this measurement, but not all are suitable in a specific application.
The first part of this study focused on selecting a suitable analytical method for oil and grease measurement in oil field produced water. Petroleum ether was found to offer a comparative dissolution of crude oil as dichloromethane and hexane; it was therefore used as the solvent of choice for the UV-Vis spectrophotometric analysis of oil and grease in synthetic produced water. Results from the UV-Vis spectrophotometric and FTIR spectrometric analytical methods were found to be comparable; it confirmed that UV-Vis spectrometry could potentially serve as an alternative method for measuring oil and grease in oil field produced water. However, while the UV-Vis method may have limitations in measuring oil and grease concentrations below 30 mg/L, the FT-IR method was found to be equally efficient at measuring both high and low oil and grease concentrations.
Dissolved air flotation (DAF) was the primary treatment technology investigated in this study for removing oil and grease from synthetic produced water. By itself, DAF achieved less than 70% oil and grease (OG) removal, and was not able to achieve a clarified effluent OG concentration of 30 mg/L required for regulatory discharge limits. At an optimum condition of 20 mg/L ferric chloride (FeCl3) at pH 8 (70.6% OG removal), coagulation was found to significantly improve the performance of the DAF unit (p < 0.05). At the optimum conditions of 100 mg/L PAC dose, pH 8 and a mixing time of 10 minutes (77.5% OG removal) and 300 mg/L OC dose, pH 8 and a mixing time of 10 minutes (78.1% OG removal), adsorption was also found to significantly improve the performance of the DAF unit (p < 0.05 in both cases). Adsorption with organoclay was recommended as the best pre-treatment for optimizing the performance of DAF in removing oil and grease from offshore oil field produced water. The bench-scale experiments showed that turbidity removal results were consistent with the OG removal results.
Without pre-treatment, DAF achieved significant removal of benzene from produced water due to the volatile nature of benzene. Therefore comparable levels of benzene removal was observed by the DAF, FeCl3/DAF, PAC/DAF and OC/DAF treatment schemes; 79.3 %, 86.6 %, 86.5 %, 83.5% respectively. Finally, as benzene is known to be carcinogenic to humans, this study recommends the incorporation auxiliary equipment in its design, for the treatment of the off-gas (VOCs, particularly BTEX) released during the removal of dissolved oil from the oil field produced water.
|
37 |
Impact Modified Poly(ethylene Terephthalate)-organoclay NanocompositesAlyamac, Elif 01 July 2004 (has links) (PDF)
This study was conducted to investigate the effects of component concentrations and addition order of the components, on the final properties of ternary nanocomposites composed of poly(ethylene terephthalate), organoclay, and an ethylene/methyl acrylate/glycidyl methacrylate (E-MA-GMA) terpolymer acting as an impact modifier for PET.
In this context, first, the optimum amount of the impact modifier was determined by melt compounding binary PET-terpolymer blends in a corotating twin-screw extruder. The amount of the impact modifier (5 wt. %) resulting in the highest Young&rsquo / s modulus and reasonable elongation at break was selected owing to its balanced mechanical properties. Thereafter, by using 5 wt. % terpolymer content, the effects of organically modified clay concentration and addition order of the components on ternary nanocomposites were systematically investigated.
Mechanical testing revealed that different addition orders of the materials significantly affected mechanical properties. Among the investigated addition orders, the best sequence of component addition (PI-C) was the one in which poly(ethylene terephthalate) was first compounded with E-MA-GMA. Later, this mixture was compounded with the organoclay in the subsequent run. Young' / s modulus of not extruded pure PET increased by 67% in samples with 5 wt. % E-MA-GMA plus 5 wt. % clay loading. The highest percent elongation at break was obtained as 300%, for the addition order of PI-C, with 1 wt. % clay content, which is nearly 50 fold higher than that obtained for pure PET.
In X-ray diffraction analysis, extensive layer separation associated with delamination of the original clay structure occurred in PI-C and CI-P sequences with both 1 and 3 wt. % clay contents. X-ray diffraction patterns showed that, at these conditions exfoliated structures resulted as indicated by the disappearence of any peaks due to the diffraction within the consecutive clay layers.
|
38 |
A New Route To The Synthesis Of Nanocomposites By Using An Unsaturated Polyester MatrixToprak, Pelin 01 September 2004 (has links) (PDF)
This study was conducted to investigate the effects of organoclay type and concentration on the nanocomposites synthesized by &ldquo / In-Situ Polymerization&rdquo / and &ldquo / Prepolymerization&rdquo / methods. In-Situ Polymerization Method was in fact a new route which consisted of dispersing the monomers / propylene glycol, maleic anhydride and o-phthalic anhydride into the galleries of montmorillonite followed by subsequent polymerization. The Prepolymerization Method involved the addition of montmorillonite to the previously synthesized unsaturated polyester. As the first step, all the compositions were prepared by Cloisite 30B, and then for comparison of clay type, nanocomposites containing 3 wt.% of Cloisite 15A and Cloisite 25A were also synthesized.
The efficiency of the two methods were compared with regards to their structural, thermal and mechanical properties. According to the results of XRD analysis, in both methods, maximum intercalation was observed when Cloisite 30B was used. An exfoliated structure was obtained in the Prepolymerization Method at 3 wt. % Cloisite 30B content. In all clay types, the increase in the d-spacings of the organoclays was higher when the Prepolymerization Method was applied.
With Cloisite 30B, maximum improvement in the impact strength was obtained at 3 wt. % organoclay loading and the In-Situ Method yielded better results leading to a 77% increase in the impact strength at this organoclay loading. Among the organoclay types, Cloisite 15A was found to give rise to maximum increase in the impact strength.
With the Prepolymerization Method higher improvement in flexural strength and flexural modulus was obtained owing to the lower styrene content in the crosslinking medium. The elongation at break values followed a decreasing trend with increasing clay content but did not show any significant difference when the clay types were compared.
|
39 |
Nanocomposites Based On Recycled Poly(ethylene Terepthalate)Tolga, Asli 01 July 2005 (has links) (PDF)
In this study, the effects of glycol type, organoclay type and concentration on the final properties of nanocomposites based on recycled poly(ethylene terephthalate) was investigated. For this purpose, first recycled PET was glycolysed and after that unsaturated polyester-montmorillonite nanocomposites were synthesized by using three different types of glycols (i.e. ethylene glycol (EG), propylene glycol (PG) and diethylene glycol (DEG)). As the first step, all the compositions were prepared by Cloisite 30B type of clay, and then for comparison of clay type, nanocomposites containing 1 wt. % of Cloisite 15A and Cloisite 25A type of clay were also synthesized. Morphological and mechanical analyses were performed for the characterization of the nanocomposites.
According to the results of XRD analysis, for all glycol types maximum intercalation was observed in Cloisite 30B containing samples. Exfoliated structures were obtained in the samples containing EG at 1 wt. % Cloisite 30B content and DEG at 3 wt. % Cloisite 30B content.
Mechanical tests showed that, for all properties, glycol type is the most effective experimental parameter. DEG based samples are the most flexible whereas PG based samples are the least flexible. EG and DEG based samples give maximum tensile strength and tensile modulus values at 1 wt. % clay loading. Samples prepared by DEG exhibited maxima in both flexural strength and modulus at 1 wt. % clay content. With respect to the organoclay type, Cloisite 30B containing samples gave the highest compatibility with the unsaturated polyester matrix as indicated by the tensile test results.
Organoclay type and content had no positive effect on the impact strength. Clay particles acted as stress concentrators and lowered the impact strength.
|
40 |
Nanocomposites Based On Blends Of PolyethyleneIsik, Fatma 01 July 2005 (has links) (PDF)
In this study the effects of compatibilizer type, organoclay type, and the addition order of components on the morphological, thermal, mechanical and flow properties of ternary nanocomposites based on low density polyethylene, LDPE were investigated. As compatibilizer, ethylene/methyl acrylate/glycidyl methacrylate, ethylene/glycidyl methacrylate, and ethylene/butyl acrylate/maleic anhydride / as organoclay Cloisite& / #61666 / 15A, Cloisite& / #61666 / 25A and Cloisite& / #61666 / 30B were used. All samples were prepared by a co-rotating twin screw extruder, followed by injection molding.
Before producing the ternary nanocomposites, in order to determine the optimum amount of the organoclay and compatibilizer, binary mixtures of LDPE/organoclay and LDPE/compatibilizer blends with different compositions were prepared. Based on the results of the mechanical tests, compatibilizer and organoclay contents were determined as 5 wt. % and 2 wt % respectively. After that, ternary nanocomposites were prepared with each compatibilizer/organoclay system and characterization of these nanocomposites was performed.
Among the investigated addition orders, mechanical test results showed that the best sequence of component addition was (PCoC), in which LDPE, compatibilizer and organoclay were simultaneously compounded in the first run of the extrusion. Considering the ternary nanocomposites, compositions of LDPE/E-MA-GMA/15A, LDPE/E-GMA/15A and LDPE/E-nBA-MAH/30B showed the highest improvement in mechanical properties.
According to the DSC analysis, addition of organoclay and compatibilizer does not influence the melting behavior of the compositions and both compatibilizers and organoclay types have no nucleation activity in LDPE.
In the X-Ray analysis, the highest increase of the basal spacing for ternary nanocomposites obtained for LDPE/E-BA-MAH/organoclay nanocomposites. This increase was 83 %, 198 %, and 206 % for samples containing 15A, 25A and 30B respectively.
|
Page generated in 0.0227 seconds