• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 489
  • 72
  • 69
  • 47
  • 20
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • 6
  • 3
  • 2
  • Tagged with
  • 1008
  • 490
  • 417
  • 153
  • 152
  • 136
  • 127
  • 122
  • 114
  • 95
  • 80
  • 76
  • 69
  • 67
  • 63
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Late and early transition metal-catalyzed homo and copolymerizations studies of olefins and polar monomers

Stojcevic, Goran 03 March 2008 (has links)
The aims of this work were two-fold. The first part of this thesis involves the synthesis of the Brookhart’s diimine catalyst [Pd(N-N)Me(Et2O)]+ (1) (N-N = (2,6-(i-Pr)2C6H3)-N=CH2CH2=N-(2,6-(i-Pr)2C6H3)) and an investigation of its insertion behaviour with the polar monomer acrylonitrile (AN), as well as its copolymerization behaviour with ethylene. Acrylonitrile displaces the ethyl ether ligand of Brookhart’s cationic complex [Pd(N-N)Me(Et2O)]+ (1) to form the N-bonded species [Pd(N-N)Me(AN)]+ (2) which exists as two equilibrating rotamers (2a and 2b). On heating, [Pd(N-N)Me(AN)]+ which appears to undergo 2,1-insertion, presumably via an unobserved 2 isomer, to give the new complex, [Pd(N-N)(CH(CN)CH2CH3)(AN)]+ (3) which apparently undergoes subsequent -hydrogen elimination to give a hydride which then reacts further with AN to give a cyanoethyl complex (5). Although [Pd(N-N)Me(AN)]+ does behave as a typical Brookhart ethylene polymerization catalyst, it does not catalyze AN polymerization and added AN suppresses ethylene polymerization. [Pd(N-N)Me(AN)]+ does not copolymerize ethylene and acrylonitrile. The second part of this thesis involves utilizing the early metal catalyst rac-Et(Ind)2ZrCl2 (Ind = C9H7) /methylaluminoxane (MAO) to copolymerize propylene or ethylene and the compounds CH2=CH(CH2)7CH2OR {R = Me, (A); PhCH2, (B); Ph3C, (C); Me3Si, (D); Ph3Si, (E)}, all ethers of 9-decen-1-ol. The results showed new copolymer materials of up to 2.0 mol % of incorporated polar monomer into polypropylene and 1.2 mol % for polyethylene. All materials were characterized by 1H and 13C NMR spectroscopy, differential scanning calorimetry and infrared spectroscopy. It was found that the increasing bulkiness of protecting groups did not increase the amount of polar monomer within the copolymers obtained. As a control, propylene-1-hexene copolymerization results were found to be comparable to those results of the polar monomer copolymerization results (up to 2.9 mol % of 1-hexene incorporated). Furthermore, 1H NMR monitoring reactions of the homopolymerization of these vinyl and silyl ethers (A - E) were investigated with the zwitterionic compound G [Cp2ZrMe][MeB(C6F5)3] (Cp = C5H5). It was found that the protecting groups were effective in protecting the functional group from poisoning the catalyst. Finally, the "aging" of MAO by heating, removing trimethylaluminum (TMA) or adding water content all proved to contribute adversely in copolymerization results, whereas adding oxygen content proved to have little effect. / Thesis (Ph.D, Chemistry) -- Queen's University, 2008-03-03 12:08:49.539
12

Palladium and Ruthenium Catalyzed Reactions

JAKSIC, BRYAN 05 July 2011 (has links)
Part one of this thesis will discuss research which involves the direct comparison of the activity of commonly used precatalysts with the newly synthesized precatalyst, Pd(η5-C5H5)(η3-1-Ph-C3H4), for Sonogashira cross-coupling reactions. Sonogashira reactions are important as they provide a simple method for the formation of substituted alkynes, a commonly found functionality within important organic molecules. These reactions are generally believed to be catalyzed by a Pd(0)L2 species which are generated in situ from a palladium precatalyst and are often co-catalyzed by CuI although use of the latter is undesirable as it induces homocoupling in certain instances. The rate and quantity of active species generated is not known for the commonly used precatalysts and is a potential reason for decreased rates and yields. Norton et al. have recently demonstrated that the newly synthesized, easily handled compound Pd(η5-C5H5)(η3-1-Ph-C3H4) is a superior precatalyst as it generates the active Pd(0)L2 species more quickly than other commonly used palladium precatalysts. Part one of this thesis will discuss research which investigated the efficiencies of precatalysts used for Sonogashira cross-coupling reactions. Part two of this thesis will discuss research into the syntheses of a novel series of ruthenium complexes and their utilization as ester hydrogenation catalysts. Reduction of esters to the corresponding alcohols is normally carried out using LiAlH4, a stoichiometric type of reaction which produces large amounts of undesirable by-products. Ruthenium-based catalysts are known to hydrogenate a variety of functional groups and many catalytic systems have been developed for the hydrogenation of alkenes, ketones, etc. The recent literature also describes a small number of ruthenium catalyst systems which enable ester hydrogenation to the same types of alcohols produced by LiAlH4 reduction albeit catalytically, a much “greener” type of chemistry. This paper will discuss the syntheses of a series of Ru(acac)2(phosphine)1-2 complexes and their utilization as ester hydrogenation catalysts. / Thesis (Master, Chemistry) -- Queen's University, 2011-06-29 09:28:58.429
13

The Synthesis and Characterization of Phosphonium Indenylide Complexes of Ruthenium(II)

Fowler, Kevin 29 April 2014 (has links)
Phosphonium indenylides (PHIN) are a promising, yet relatively unexplored class of transition metal ligands. The ylidic resonance structure b of this compound is isoelectronic with the cyclopentadienyl ligand which is ubiquitous throughout organometallic chemistry. Phosphonium indenylides have been found to have electron donating properties between those of η6-benzene and η5-cyclopentadienyl ligands and are tuneable based on the nature of the phosphine used. In addition, upon coordination, phosphonium indenylides exhibit planar chirality. These properties may potentially lead to interesting coordination chemistry and applications in catalysis.The phosphonium indenylides 1-C9H6PPh3 (I), 1-C9H6PMePh2 (II) and1-C9H6PMe2Ph (III) have been synthesized and reacted with [CpRu(MeCN)3]PF6 to form complexes of the type [CpRu(I-III)]PF6 (V-VII) which were characterized by NMR spectroscopy, ESI MS and X-ray crystallography. In an attempt to synthesize Ru-PHIN complexes with labile ligands attached to the metal centre, an arene exchange reaction between a PHIN ligand and RuCl2(η6-ethylbenzoate)(PPh3) was employed to produce RuCl2(II)(PPh3) which was characterized by extensive NMR spectroscopy. / Thesis (Ph.D, Chemistry) -- Queen's University, 2014-04-29 12:07:41.085
14

Synthesis and Reactions of Iron and Ruthenium Dinitrogen Complexes

Guest, Ruth Winifred January 2008 (has links)
Doctor of Philosophy (PhD) / This thesis is primarily concerned with the synthesis and reactions of iron and ruthenium dinitrogen complexes of tripodal phosphine ligands. Of particular interest is the cationic dinitrogen bridged iron complex [(FeH(PP3))2(μ-N2)]2+ 23, containing the tetradentate ligand P(CH2CH2PMe2)3, PP3 1, and its potential for facilitating the reduction of the bound dinitrogen upon treatment with acid. The synthesis of a selection of novel and known tripodal phosphine and amino phosphine ligands is described. New ligands N(CH2CH2CH2PMe2)3 N3P3 7 and P(CH2CH2CH2PiPr2)3 P3Pi3 11 were synthesised by nucleophilic displacement of bromide from the bromoalkylphosphine and bromoalkylamine precursors with the relevant phosphide. A new method for synthesis of known ligand P(CH2CH2CH2PMe2)3 P3P3 19 by the nucleophilic substitution of its chloroalkylphosphine oxide with dimethylphosphide and subsequent reduction is also reported. The reaction of [(FeH(PP3))2(μ-N2)]2+ 23 with base produced the singly deprotonated mixed valence species [(FeH(PP3))(μ-N2)(Fe(PP3))]+ 37 and subsequently the iron(0) dinuclear species (Fe(PP3))2(μ-N2) 38 and mononuclear complex Fe(N2)(PP3) 44. The 15N labelling of complexes has allowed the 15N NMR spectra of 23, 37 and 44 to be reported along with the observation of a long-range 5JP-P coupling across the bridging dinitrogen of 37. Complexes 23 and 37 were also structurally characterised by X-ray crystallography. The treatment of a variety of iron PP3 1 dinitrogen complexes, including the mononuclear species [(Fe(N2)H(PP3)]+ 22, with acid, or base then acid, did not result in the formation of ammonia from reduction of the complexed dinitrogen. The reactions of FeCl2(PP3) 24 and FeClH(PP3) 25 with ammonia and hydrazine afforded the complexes [FeCl(N2H4)(PP3)] 48, [FeH(N2H4)(PP3)] 47, [FeCl(NH3)(PP3)] 49 and [FeH(NH3)(PP3)] 46. Complexes 47 and 46 are considered potential intermediates in any reduction of the dinitrogen ligand of 23 to ammonia. Complexes 49 and 46 were also formed from the decomposition of the hydrazine complexes 48 and 47. The 15N NMR shifts, derived from both the 15N labelling of complexes and from 1H-15N 2D NMR experiments at natural abundance are reported. In addition, complex 47 was characterised by X-ray crystallography. The novel ligand P(CH2CH2PiPr2)3 PPi3 12 was used in the successful synthesis of [FeCl(PPi3)]+ 51 and [RuCl(PPi3)]+ 56. Reduction of 51 and 56 with potassium graphite under dinitrogen afforded the complexes Fe(N2)(PPi3) 52 and Ru(N2)(PPi3) 57 respectively. This is the first report of a Ru(0) dinitrogen complex. Treatment of 52 and 57 with lutidinium tetrafluoroborate resulted in protonation and oxidation of the metal centre to afford the hydrido complexes [Fe(N2)H(PPi3)]+ 53 and [Ru(N2)H(PPi3)]+ 58 respectively. 15N labelled analogues of 52, 53, 57 and 58 were achieved by exchange reactions with 15N2 gas, allowing for analysis by 15N NMR spectroscopy. Species 52, 57 and 58 have also been structurally characterised by X-ray crystallography. Treatment of 52 with excess acid in THF afforded both 53 and the dihydrogen complex [Fe(H2)H(PPi3)]+ 54. The mechanism of formation of 54 probably involves the C-H activation of the solvent THF. The complex cation [RuCl(P3Pi3)]+ 65 was synthesised using the novel ligand P3Pi3 11. A polymeric iron(II) complex, [Fe2Cl4(N3P3)2]n 66, of the tridentate ligand N3P3 7 was also synthesised. Characterisation of both 65 and 66 by X-ray crystallography is reported. (FeCl)2(μ-Cl)2(μ-Pi2)2 68, an unusual bridged dimer of the known ligand CH2(PiPr2)2 Pi2 67, and iron(II) and iron(0) tetramers of the PP3 1 ligand, namely [Fe4Cl4(PP3)5]4+ 71 and Fe4(PP3)5 72 were also characterised by X-ray crystallography.
15

Organometallic precursors for novel material design

Agapiou, Kyriacos, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
16

Organometallic and coordination derivatives of main group elements.

Deacon, Glen Berenger. January 1971 (has links) (PDF)
Thesis (D.Sc.) -- University of Adelaide, Dept. of Chemistry, 1971?
17

Organo-iridium compounds : synthesis, characterization and reactivity /

Frazier, Joy Faith, January 1991 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1991. / Vita. Abstract. Includes bibliographical references (leaves 73-74). Also available via the Internet.
18

Synthesis and stereochemical characterization of a series of organometallic M₄X₄ cubanes (where M = Fe, Co, or Ni and x = P, As, Sb, Bi, or S) an investigation of their reactivity /

Johnson, Robert Edward, January 1981 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1981. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
19

Mixed-ligand strategy for the preparation of manganese based single-molecule magnets

Habrych, Malgorzata. January 2004 (has links)
Thesis (M.S.)--University of Florida, 2004. / Title from title page of source document. Document formatted into pages; contains 90 pages. Includes vita. Includes bibliographical references.
20

A stereochemical investigation toward understanding the nature of core atom interactions in organometallic clusters an evaluation of the influence of such interactions upon synthetic chemistry, physical properties, structure, and bonding /

Paquette, Michael Steven, January 1978 (has links)
Thesis--University of Wisconsin--Madison. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.

Page generated in 0.0713 seconds