• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A STUDY OF LIGNIN DEPOLYMERIZATION BY SELECTIVE CLEAVAGE OF THE Cα-Cβ LINKAGES IN LIGNIN MODEL COMPOUNDS VIA BAEYER-VILLIGER OXIDATION & AN INVESTIGATION OF THE CHANNELING REACTION IN NITROGEN-DOPED MULTIWALLED CARBON NANOTUBES (N-MWCNTS)

Patil, Nikhil Dilip 01 January 2014 (has links)
A STUDY OF LIGNIN DEPOLYMERIZATION BY SELECTIVE CLEAVAGE OF THE Cα-Cβ LINKAGES IN LIGNIN MODEL COMPOUNDS VIA BAEYER-VILLIGER OXIDATION Lignin is amorphous aromatic polymer derived from plants and is a potential source of fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise oxidation of lignin model compounds. Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared several lignin model compounds that possess structures, characteristic reactivity, and linkages closely related to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl groups using TEMPO/O2, followed by Baeyer-Villiger oxidation of the resulting ketones using H2O2, successfully cleaves the Cα-Cβ linkage in the model compounds. This process was also applied to depolymerization of Organosolv lignin. The deconstructed lignin was analyzed by a number of techniques, including ATR-IR, GPC, and 31P NMR of suitably derivatized samples. AN INVESTIGATION OF THE CHANNELING REACTION IN NITROGEN-DOPED MULTIWALLED CARBON NANOTUBES (N-MWCNTS) The reduction of nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) with Li/NH3 results in deep longitudinal cuts in the nanotubes structure. As the N-MWCNTs are anisotropic, we were able to investigate whether the unzipping process proceeds with equal efficiency from the tip end or from the root (catalyst) end of the N-MWCNT structure. To accomplish this we prepared polymer filled aligned arrays of N-MWCNTs, then exposed one or the other end. Through this approach we were able to shield the sidewalls and either end of the nanotubes from the Li/NH3 solution We have found that when the top end of the N-MWCNTs array was exposed to the reaction mixture, very few nanotubes suffered significant ‘unzipping’. However, when the root (substrate) side of the array is exposed to the reaction mixture, we observe the features characteristic of nanotubes with longitudinal cuts. Our finding provides some insight into the mechanism of the unzipping process, and provides evidence that the unzipping process has a directional preference-unzipping from the root end towards the tip end. And may provide a method for selective functionalization of the interior of tubes and create a new form of nanotube- based porous membrane.
2

Effect of Organosolv Lignin and Extractable Lignin on Enzymatic Hydrolysis of Lignocelluloses

Tan, Xin January 2020 (has links)
No description available.
3

Bagaço de cana de açúcar como reforço de matrizes termorrígidas baseadas em macromoléculas de ligninas / Sugarcane bagasse as reinforcement of thermoset matrices based on lignin macromolecules

Silva, Cristina Gomes da 29 July 2011 (has links)
As resinas do tipo fenólica são amplamente utilizadas devido à sua diversidade de aplicações. Considerando as inúmeras vantagens desta resina (estabilidade térmica e dimensional, alta resistência à chama, etc.), este trabalho teve como um dos objetivos melhorar as propriedades mecânicas do termorrígido fenólico, pois estes são frágeis quando não reforçados. Fibras lignocelulósicas naturais foram usadas como reforço no termorrígido fenólico, o que levou a obtenção de biocompósitos. Devido a grande disponibilidade de fibras de bagaço de cana de açúcar no país, como subproduto de agroindústrias, estas fibras foram utilizadas na produção dos compósitos (sendo substituído em até 70% da matriz termorrígida por fibra natural), com a finalidade de atribuir maior valor agregado que o tradicionalmente encontrado para estas fibras. Tendo em vista que atualmente estas fibras podem ser obtidas como resíduo da agroindústria na forma queimada e não queimada, um estudo comparativo foi feito usando ambas as fibras. Compósitos fenólicos foram preparados com as fibras queimadas e não queimadas e os resultados obtidos de resistência ao impacto, módulo de armazenamento e absorção de água mostraram que não há diferenças significativas entre as propriedades de ambos. Considerando estes resultados, a continuidade do trabalho foi realizada com as fibras de bagaço de cana queimado, devido à maior disponibilidade atual destas fibras. Também foram utilizadas fibras de sisal, tradicionalmente conhecidas pelas excelentes propriedades mecânicas e disponibilidade em grande escala no país, para fins comparativos. Adicionalmente, visando aumentar a proporção de uso de matéria prima oriunda de fonte renovável, o lignossulfonato de sódio (NaLS) e lignina organossolve (LO), macromoléculas obtidas a partir de fibras lignocelulósicas, substituíram em 100% o fenol nas reações de obtenção de resinas do tipo resol (obtidas em meio alcalino). Ainda, o formaldeído foi substituído pelo glutaraldeído, um dialdeído, visando-se síntese de resinas alternativas a fenol-formaldeído, tradicionalmente usada. Também, as fibras de bagaço de cana queimadas foram tratadas em solução de NaLS, em banho de ultrassom. Este tratamento foi escolhido por se tratar do uso de macromolécula oriunda de fontes renováveis, assim como pelo fato de a fibra (bagaço de cana) conter alto teor de lignina, o que leva à perspectiva de intensificação da afinidade fibra/agente de tratamento, além de intensificar as interações fibra/matriz, devido à presença de anéis do tipo fenólico em ambas, superfícies das fibras e matriz. As fibras foram caracterizadas quanto à composição química e analisadas via termogravimetria (TG), calorimetria exploratória diferencial (DSC), microscopia eletrônica de varredura (MEV), cromatografia gasosa inversa (IGC), espectroscopia na região de infravermelho (IV), cromatografia liquida de alta performance (HPLC, para determinação do teor de açúcares no bagaço de cana queimado) e difração de raios X. O termorrígido fenólico (não reforçado) e compósitos (matriz fenólica e matrizes baseadas em LO e NaLS reforçados por fibras com distribuição aleatória, em diferentes proporções e comprimentos) foram caracterizados por TG, DSC, IV, MEV, DMTA, resistência ao impacto Izod, resistência à flexão quanto à capacidade de absorção de água. Termorrígidos preparados a base de NaLS apresentaram grande fragilidade após a moldagem, tendo sido apenas submetidos a análises de TG, DSC e cromatografia gasosa inversa (IGC), devido à impossibilidade de realizar outros ensaios. As análises de IGC foram realizadas para fibras e matriz, obtendo-se parâmetros relacionados à energia de superfície e disponibilidade de sítios ácidos e básicos. Os resultados de IGC obtidos para as fibras, tratadas e não tratadas, confirmaram que houve a adsorção do lignossulfonato sódio à superfície destas devido ao aumento de sítios ativos (ácidos e básicos) disponíveis. Os valores de IGC obtidos para as matrizes sugerem que as interações fibra/matriz são favorecidas, principalmente quando o NaLS está presente em ambos os componentes (fibra/matriz). Os resultados obtidos na caracterização dos compósitos indicaram que o lignossulfonato de sódio e a lignina organossolve podem substituir o fenol na formulação de resinas. A utilização de fibras como reforço melhorou as propriedades mecânicas dos materiais, comparativamente aos termorrígidos. Dentre os compósitos preparados com bagaço de cana, a amostra que apresentou melhor desempenho nos ensaios de impacto foram os compósitos de matrizes baseadas em glutaraldeído-LO (112 J m-1) e glutaraldeído-NaLS (82 J m-1). Os compósitos de matriz baseada em formaldeído-NaLS reforçados com fibras de sisal apresentaram melhor desempenho no ensaio de resistência ao impacto (1029 J m-1) e menor quantidade de água absorvida quando imerso em água, comparado aos demais compósitos preparados neste trabalho. As análises de MEV comprovaram a intensificação da adesão entre as fibras de sisal e a matriz, quando esta é preparada a partir de NaLS. Compósitos reforçados com fibras de sisal foram os que apresentaram melhor desempenho mecânico, tanto em resistência ao impacto quanto em flexão, provavelmente devido às propriedades intrínsecas das fibras de sisal. No geral, quando os termorrígidos foram reforçados com as fibras lignocelulósicas, bagaço de cana ou sisal, apresentaram resultados de estabilidade térmica e mecânica satisfatórios. Destaca-se que compósitos preparados com alto teor de material proveniente de fonte renovável, como os compósitos reforçados com até 70% de fibra, e os compósitos com matriz baseada em 100% de lignossulfonato de sódio e lignina organossolve, apresentaram grande potencial para diferentes aplicações, tais como no setor de embalagens e automotivo, neste caso para aplicações não estruturais. / Phenolic resins are widely known due to their diverse applications. Considering the many advantages of this type of resin (flame resistance, thermal and dimensional stability, etc), this study has one objective: the improvement of the mechanical properties of the phenolic thermoset, because this material is fragile when it is not reinforced. Natural lignocellulosic fibers were used as reinforcement in the phenolic thermoset leading to the obtaining of biocomposites. Because the fibers from sugarcane bagasse are byproducts widely available by agricultural industries in this country, these fibers were used in the production of the composites (the thermoset phenolic was replaced by up to 70% natural fibers) - the purpose was to assign greater value than traditionally found for these fibers. Currently, sugarcane fibers can be obtained from natural and burned bagasse. A comparative study was realized using both fibers. Phenolic composites were prepared with the burned fibers and the results obtained from the impact resistance, storage modulus and water absorption showed that they are not significantly different when it comes to the properties of both. Considering these results, the continuity of this study was realized with the burned fibers of sugarcane due to the higher and current availability of this fiber. Lignocellulosic fibers, are traditionally known because of their excellent mechanical properties and wide availability, like the sisal ones used in the present work for comparative reasons. Sisal fibers are available in large scale, facilitating their use. Additionally, sodium lignosulphonate (NaLS) and organosolv lignin (LO), which are macromolecules obtained from the lignocellulosics fibers were used to increase the proportion of the raw materials from renewable sources for a possible phenol substitute in resin reaction, resol type (an alkaline medium). Also, formaldehyde was replaced by glutaraldehyde aiming at the synthesis alternative resin to phenol-formaldehyde, which is traditionally used. Furthermore, burned sugar cane bagasse fibers were treated in NaLS solution, in ultrasonic bath. This treatment was chosen because this macromolecule is from renewable resources and as well as the fibers (sugarcane bagasse) have high content of lignin, which leads to the perspective of affinity intensification between fibers/lignin and fibers/matrix, due to the presence of the aromatics rings in both surfaces. The fibers were characterized in terms of chemical composition and analyzed by thermogravimetry (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), inverse gas chromatography (IGC), infrared spectroscopy (IV), high performance liquid chromatography (HPLC, determination of the sugar content in the burned sugar cane bagasse) and X-ray diffraction. The lignin and resin were characterized by SEC, RMN 1H and RMN 31P. The thermosets (not reinforced) and composites (phenolic matrix and LO and NaLS matrix reinforced with randomly dispersed fibers) were characterized by TG, DSC, IV, Izod impact strength, MEV, flexural strength, DMTA and also the water absorption capacity was evaluated. Thermoset prepared based on NaLS showed great weakness after molding, being submitted only to analysis by TG, DSC and inverse gas chromatography (IGC), due to the impossibility of doing other tests. IGC analysis were realized for fibers and matrix. Parameters related to surface energy and availability of acids and basics sites were obtained. IGC results obtained for the fibers, treated and untreated, confirm that there was adsorption of lignosulphonate in these surfaces due to the increase of available active sites (acids and basics). IGC values obtained for matrix suggest that fiber/matrix interactions are favored, mainly when the NaLS is present in both components (fiber/matrix). The results obtained in the characterization of the composites indicated that lignosulphonate sodium and organosolv lignin can substitute the phenol in the resin formulation. Fibers used as reinforcement improved the mechanical properties of materials, compared to thermosets. Among the composites prepared with sugarcane bagasse, the sample that showed better performance in the impact test were the composites based on glutaraldehyde -LO (112 J m-1) and glutaraldehyde -NaLS (82 J m-1). Composites based on formaldehyde -NaLS reinforced with sisal fibers showed better performance in impact test (1009 J m-1) and less water absorbed when immersed in water, compared to others composites prepared in this study. SEM analysis confirmed the adhesion intensification between the sisal fibers and the matrix, when this is prepared from NaLS. Composites reinforced with sisal fibers showed the best mechanical performance, such as impact strength and flexural strength, probably due to the intrinsic properties of sisal fibers. In general, when the thermosets were reinforced with lignocellulosic fibers, sugarcane bagasse or sisal, they showed satisfactory results of the thermic and mechanical stability. It should be highlighted that composites prepared with high content of material from renewable sources, as the composites reinforced up to 70% fibers and composites with matrix based on 100% lignosulphonate and organosolv lignin, they showed great potential to different applications, such as in the packaging sector and the automotive one, in this case to non-structural applications.
4

Base-catalyzed depolymerization of lignin and hydrodeoxygenation of lignin model compounds for alternative fuel production

Olarte, Mariefel Valenzuela 04 April 2011 (has links)
This study considered the potential use of lignin as possible renewable fuel and chemical feedstock source. Among the various polymers present in lignocellulosic biomass, the polyaromatic lignin is the one component that is most chemically similar to petroleum. However, it still contains a much larger amount of oxygen compared to crude oil. As such, two strategies were employed in this study: (1) studying the lignin depolymerization in the presence of high temperature and base catalysts; and, (2) employing hydrodeoxygenation as a means to decrease the O/C ratio in lignin-derived model compounds. The base-catalyzed depolymerization (BCD) of organosolv lignin was done in a 500-mL Monel Parr reactor at temperatures ranging from 165°C to 350°C. Complete solubilization of lignin derivatives was possible in the presence of NaOH and KOH, except at 350°C. NMR experiments revealed formation of oxidized groups (carboxylic and hydroxyl groups) as well as alkyl groups. On the other hand, the use of NH4OH showed N incorporation. Identified and quantified DCM-soluble monomeric compounds were at most 6% of the starting material and are mainly phenolic. This study revealed the apparent susceptibility of syringyl units over guaiacyl units in BCD. This could in turn guide the choice of substrate on which base-catalyzed depolymerization could be applied. Syringaldehyde was used as the starting material to study batch hydrodeoxygenation (HDO) using several non-cobalt/molybdenum based catalysts. A 50-ml Parr reactor was used, pressurized by 1000 psig of H2 and heated to 300°C. Nickel based catalysts (nickel phosphide, nickel oxide and nickel phosphate) as well as supported precious metals (Pt and Pd) were tested as HDO catalysts. Of the three O-containing functional groups of syringaldehyde, the aldehydic group was found to be the most susceptible. In the presence of the Al2O3-supported catalysts, the methyl groups liberated were found to be incorporated back into the aromatic ring, forming alkylated compounds. In the last section of this dissertation, hydrothermally synthesized supported Ni on mesoporous silica (MCF) and acid catalysts (HY and H-Al-MCF) were used for probing the effect of bifunctional metal-acid catalysis on phenol hydrodeoxygenation/hydrogenation. Catalyst configurations were varied from the previously studied wet-impregnated Pt/HY catalyst. Based on a hypothesis that coking catalyzed by the acidic zeolite in the wet impregnated Pt/HY catalyst was the main cause of catalyst deactivation and decreased phenol conversion, separately synthesized metal and acid catalyst systems were tested. Complete phenol conversion was sustained for at least three times longer in a continuous flow reactor operated at 200°C and 0.79 MPa of flowing H2. The separation of the metal and acid sites generated a tunable system capable of producing cyclohexanol, cyclohexane or cyclohexene at very high selectivities, even achieving 99% selectivities for cyclohexane.
5

Bagaço de cana de açúcar como reforço de matrizes termorrígidas baseadas em macromoléculas de ligninas / Sugarcane bagasse as reinforcement of thermoset matrices based on lignin macromolecules

Cristina Gomes da Silva 29 July 2011 (has links)
As resinas do tipo fenólica são amplamente utilizadas devido à sua diversidade de aplicações. Considerando as inúmeras vantagens desta resina (estabilidade térmica e dimensional, alta resistência à chama, etc.), este trabalho teve como um dos objetivos melhorar as propriedades mecânicas do termorrígido fenólico, pois estes são frágeis quando não reforçados. Fibras lignocelulósicas naturais foram usadas como reforço no termorrígido fenólico, o que levou a obtenção de biocompósitos. Devido a grande disponibilidade de fibras de bagaço de cana de açúcar no país, como subproduto de agroindústrias, estas fibras foram utilizadas na produção dos compósitos (sendo substituído em até 70% da matriz termorrígida por fibra natural), com a finalidade de atribuir maior valor agregado que o tradicionalmente encontrado para estas fibras. Tendo em vista que atualmente estas fibras podem ser obtidas como resíduo da agroindústria na forma queimada e não queimada, um estudo comparativo foi feito usando ambas as fibras. Compósitos fenólicos foram preparados com as fibras queimadas e não queimadas e os resultados obtidos de resistência ao impacto, módulo de armazenamento e absorção de água mostraram que não há diferenças significativas entre as propriedades de ambos. Considerando estes resultados, a continuidade do trabalho foi realizada com as fibras de bagaço de cana queimado, devido à maior disponibilidade atual destas fibras. Também foram utilizadas fibras de sisal, tradicionalmente conhecidas pelas excelentes propriedades mecânicas e disponibilidade em grande escala no país, para fins comparativos. Adicionalmente, visando aumentar a proporção de uso de matéria prima oriunda de fonte renovável, o lignossulfonato de sódio (NaLS) e lignina organossolve (LO), macromoléculas obtidas a partir de fibras lignocelulósicas, substituíram em 100% o fenol nas reações de obtenção de resinas do tipo resol (obtidas em meio alcalino). Ainda, o formaldeído foi substituído pelo glutaraldeído, um dialdeído, visando-se síntese de resinas alternativas a fenol-formaldeído, tradicionalmente usada. Também, as fibras de bagaço de cana queimadas foram tratadas em solução de NaLS, em banho de ultrassom. Este tratamento foi escolhido por se tratar do uso de macromolécula oriunda de fontes renováveis, assim como pelo fato de a fibra (bagaço de cana) conter alto teor de lignina, o que leva à perspectiva de intensificação da afinidade fibra/agente de tratamento, além de intensificar as interações fibra/matriz, devido à presença de anéis do tipo fenólico em ambas, superfícies das fibras e matriz. As fibras foram caracterizadas quanto à composição química e analisadas via termogravimetria (TG), calorimetria exploratória diferencial (DSC), microscopia eletrônica de varredura (MEV), cromatografia gasosa inversa (IGC), espectroscopia na região de infravermelho (IV), cromatografia liquida de alta performance (HPLC, para determinação do teor de açúcares no bagaço de cana queimado) e difração de raios X. O termorrígido fenólico (não reforçado) e compósitos (matriz fenólica e matrizes baseadas em LO e NaLS reforçados por fibras com distribuição aleatória, em diferentes proporções e comprimentos) foram caracterizados por TG, DSC, IV, MEV, DMTA, resistência ao impacto Izod, resistência à flexão quanto à capacidade de absorção de água. Termorrígidos preparados a base de NaLS apresentaram grande fragilidade após a moldagem, tendo sido apenas submetidos a análises de TG, DSC e cromatografia gasosa inversa (IGC), devido à impossibilidade de realizar outros ensaios. As análises de IGC foram realizadas para fibras e matriz, obtendo-se parâmetros relacionados à energia de superfície e disponibilidade de sítios ácidos e básicos. Os resultados de IGC obtidos para as fibras, tratadas e não tratadas, confirmaram que houve a adsorção do lignossulfonato sódio à superfície destas devido ao aumento de sítios ativos (ácidos e básicos) disponíveis. Os valores de IGC obtidos para as matrizes sugerem que as interações fibra/matriz são favorecidas, principalmente quando o NaLS está presente em ambos os componentes (fibra/matriz). Os resultados obtidos na caracterização dos compósitos indicaram que o lignossulfonato de sódio e a lignina organossolve podem substituir o fenol na formulação de resinas. A utilização de fibras como reforço melhorou as propriedades mecânicas dos materiais, comparativamente aos termorrígidos. Dentre os compósitos preparados com bagaço de cana, a amostra que apresentou melhor desempenho nos ensaios de impacto foram os compósitos de matrizes baseadas em glutaraldeído-LO (112 J m-1) e glutaraldeído-NaLS (82 J m-1). Os compósitos de matriz baseada em formaldeído-NaLS reforçados com fibras de sisal apresentaram melhor desempenho no ensaio de resistência ao impacto (1029 J m-1) e menor quantidade de água absorvida quando imerso em água, comparado aos demais compósitos preparados neste trabalho. As análises de MEV comprovaram a intensificação da adesão entre as fibras de sisal e a matriz, quando esta é preparada a partir de NaLS. Compósitos reforçados com fibras de sisal foram os que apresentaram melhor desempenho mecânico, tanto em resistência ao impacto quanto em flexão, provavelmente devido às propriedades intrínsecas das fibras de sisal. No geral, quando os termorrígidos foram reforçados com as fibras lignocelulósicas, bagaço de cana ou sisal, apresentaram resultados de estabilidade térmica e mecânica satisfatórios. Destaca-se que compósitos preparados com alto teor de material proveniente de fonte renovável, como os compósitos reforçados com até 70% de fibra, e os compósitos com matriz baseada em 100% de lignossulfonato de sódio e lignina organossolve, apresentaram grande potencial para diferentes aplicações, tais como no setor de embalagens e automotivo, neste caso para aplicações não estruturais. / Phenolic resins are widely known due to their diverse applications. Considering the many advantages of this type of resin (flame resistance, thermal and dimensional stability, etc), this study has one objective: the improvement of the mechanical properties of the phenolic thermoset, because this material is fragile when it is not reinforced. Natural lignocellulosic fibers were used as reinforcement in the phenolic thermoset leading to the obtaining of biocomposites. Because the fibers from sugarcane bagasse are byproducts widely available by agricultural industries in this country, these fibers were used in the production of the composites (the thermoset phenolic was replaced by up to 70% natural fibers) - the purpose was to assign greater value than traditionally found for these fibers. Currently, sugarcane fibers can be obtained from natural and burned bagasse. A comparative study was realized using both fibers. Phenolic composites were prepared with the burned fibers and the results obtained from the impact resistance, storage modulus and water absorption showed that they are not significantly different when it comes to the properties of both. Considering these results, the continuity of this study was realized with the burned fibers of sugarcane due to the higher and current availability of this fiber. Lignocellulosic fibers, are traditionally known because of their excellent mechanical properties and wide availability, like the sisal ones used in the present work for comparative reasons. Sisal fibers are available in large scale, facilitating their use. Additionally, sodium lignosulphonate (NaLS) and organosolv lignin (LO), which are macromolecules obtained from the lignocellulosics fibers were used to increase the proportion of the raw materials from renewable sources for a possible phenol substitute in resin reaction, resol type (an alkaline medium). Also, formaldehyde was replaced by glutaraldehyde aiming at the synthesis alternative resin to phenol-formaldehyde, which is traditionally used. Furthermore, burned sugar cane bagasse fibers were treated in NaLS solution, in ultrasonic bath. This treatment was chosen because this macromolecule is from renewable resources and as well as the fibers (sugarcane bagasse) have high content of lignin, which leads to the perspective of affinity intensification between fibers/lignin and fibers/matrix, due to the presence of the aromatics rings in both surfaces. The fibers were characterized in terms of chemical composition and analyzed by thermogravimetry (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), inverse gas chromatography (IGC), infrared spectroscopy (IV), high performance liquid chromatography (HPLC, determination of the sugar content in the burned sugar cane bagasse) and X-ray diffraction. The lignin and resin were characterized by SEC, RMN 1H and RMN 31P. The thermosets (not reinforced) and composites (phenolic matrix and LO and NaLS matrix reinforced with randomly dispersed fibers) were characterized by TG, DSC, IV, Izod impact strength, MEV, flexural strength, DMTA and also the water absorption capacity was evaluated. Thermoset prepared based on NaLS showed great weakness after molding, being submitted only to analysis by TG, DSC and inverse gas chromatography (IGC), due to the impossibility of doing other tests. IGC analysis were realized for fibers and matrix. Parameters related to surface energy and availability of acids and basics sites were obtained. IGC results obtained for the fibers, treated and untreated, confirm that there was adsorption of lignosulphonate in these surfaces due to the increase of available active sites (acids and basics). IGC values obtained for matrix suggest that fiber/matrix interactions are favored, mainly when the NaLS is present in both components (fiber/matrix). The results obtained in the characterization of the composites indicated that lignosulphonate sodium and organosolv lignin can substitute the phenol in the resin formulation. Fibers used as reinforcement improved the mechanical properties of materials, compared to thermosets. Among the composites prepared with sugarcane bagasse, the sample that showed better performance in the impact test were the composites based on glutaraldehyde -LO (112 J m-1) and glutaraldehyde -NaLS (82 J m-1). Composites based on formaldehyde -NaLS reinforced with sisal fibers showed better performance in impact test (1009 J m-1) and less water absorbed when immersed in water, compared to others composites prepared in this study. SEM analysis confirmed the adhesion intensification between the sisal fibers and the matrix, when this is prepared from NaLS. Composites reinforced with sisal fibers showed the best mechanical performance, such as impact strength and flexural strength, probably due to the intrinsic properties of sisal fibers. In general, when the thermosets were reinforced with lignocellulosic fibers, sugarcane bagasse or sisal, they showed satisfactory results of the thermic and mechanical stability. It should be highlighted that composites prepared with high content of material from renewable sources, as the composites reinforced up to 70% fibers and composites with matrix based on 100% lignosulphonate and organosolv lignin, they showed great potential to different applications, such as in the packaging sector and the automotive one, in this case to non-structural applications.

Page generated in 0.0441 seconds