Spelling suggestions: "subject:"erientation distribution function (ODF)"" "subject:"d'orientation distribution function (ODF)""
1 |
Impacts des étapes de pré-traitement des données de diffusion sur la tractographie - Imagerie de diffusionBoré, Arnaud January 2012 (has links)
Ce mémoire présente l'ensemble des étapes de pré-traitement appliquées aux images provenant de l'imagerie par résonance magnétique de diffusion afin de conseiller les meilleurs paramètres dans une étude de tractographie. L'imagerie de diffusion nous donne l'information locale des déplacements moyens des molécules d'eau dans le cerveau. Cette information nous permet d'inférer l'architecture de la matière blanche. La reconstruction du signal de diffusion fait appel à différentes méthodes plus ou moins aptes à restituer la complexité des configurations de fibres. Dans ce mémoire, nous proposons une nouvelle méthode de reconstruction du phénomène de diffusion basée sur la décomposition en ondelettes sphériques. Ensuite, en combinant ces informations à tous les points du cerveau nous reconstruisons le réseau de fibres de la matière blanche par un algorithme de tractographie déterministe. Afin d'initier cet algorithme, nous proposons une nouvelle méthode d'initialisation dans le but de mieux gérer la complexité des configurations de fibres au sein d'un seul voxel. Les fibres reconstruites sont très difficiles à évaluer dans le cerveau car nous ne connaissons pas la configuration réelle des fibres. Pour être en mesure d'évaluer nos méthodes de reconstruction, nous utilisons un fantôme calquant la complexité des configurations de fibres trouvées dans le cerveau. Dans ce mémoire, nous proposons un ensemble de métriques et un système de notations permettant d'évaluer automatiquement la qualité des résultats d'une tractographie. Nous concluons l'étude concernant les données synthétiques par un ensemble de conseils sur les paramètres à utiliser afin d'obtenir des résultats de tractographie optimaux. Finalement, nous évaluons qualitativement les résultats de tractographie issus de données réelles afin de confirmer nos choix sur les données fantômes.
|
2 |
High angular resolution diffusion-weighted magnetic resonance imaging: adaptive smoothing and applicationsMetwalli, Nader 07 July 2010 (has links)
Diffusion-weighted magnetic resonance imaging (MRI) has allowed unprecedented non-invasive mapping of brain neural connectivity in vivo by means of fiber tractography applications. Fiber tractography has emerged as a useful tool for mapping brain white matter connectivity prior to surgery or in an intraoperative setting. The advent of high angular resolution diffusion-weighted imaging (HARDI) techniques in MRI for fiber tractography has allowed mapping of fiber tracts in areas of complex white matter fiber crossings. Raw HARDI images, as a result of elevated diffusion-weighting, suffer from depressed signal-to-noise ratio (SNR) levels. The accuracy of fiber tractography is dependent on the performance of the various methods extracting dominant fiber orientations from the HARDI-measured noisy diffusivity profiles. These methods will be sensitive to and directly affected by the noise. In the first part of the thesis this issue is addressed by applying an objective and adaptive smoothing to the noisy HARDI data via generalized cross-validation (GCV) by means of the smoothing splines on the sphere method for estimating the smooth diffusivity profiles in three dimensional diffusion space. Subsequently, fiber orientation distribution functions (ODFs) that reveal dominant fiber orientations in fiber crossings are then reconstructed from the smoothed diffusivity profiles using the Funk-Radon transform. Previous ODF smoothing techniques have been subjective and non-adaptive to data SNR. The GCV-smoothed ODFs from our method are accurate and are smoothed without external intervention facilitating more precise fiber tractography.
Diffusion-weighted MRI studies in amyotrophic lateral sclerosis (ALS) have revealed significant changes in diffusion parameters in ALS patient brains. With the need for early detection of possibly discrete upper motor neuron (UMN) degeneration signs in patients with early ALS, a HARDI study is applied in order to investigate diffusion-sensitive changes reflected in the diffusion tensor imaging (DTI) measures axial and radial diffusivity as well as the more commonly used measures fractional anisotropy (FA) and mean diffusivity (MD). The hypothesis is that there would be added utility in considering axial and radial diffusivities which directly reflect changes in the diffusion tensors in addition to FA and MD to aid in revealing neurodegenerative changes in ALS. In addition, applying adaptive smoothing via GCV to the HARDI data further facilitates the application of fiber tractography by automatically eliminating spurious noisy peaks in reconstructed ODFs that would mislead fiber tracking.
|
Page generated in 0.2012 seconds