• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tensile and fracture behaviour of isotropic and die-drawn polypropylene-clay nanocomposites : compounding, processing, characterization and mechanical properties of isotropic and die-drawn polypropylene/clay/polypropylene maleic anhydride composites

Al-Shehri, Abdulhadi S. January 2010 (has links)
As a preliminary starting point for the present study, physical and mechanical properties of polypropylene nanocomposites (PPNCs) for samples received from Queen's University Belfast have been evaluated. Subsequently, polymer/clay nanocomposite material has been produced at Bradford. Mixing and processing routes have been explored, and mechanical properties for the different compounded samples have been studied. Clay intercalation structure has received particular attention to support the ultimate objective of optimising tensile and fracture behaviour of isotropic and die-drawn PPNCs. Solid-state molecular orientation has been introduced to PPNCs by the die-drawing process. Tensile stress-strain measurements with video-extensometry and tensile fracture of double edge-notched tensile specimens have been used to evaluate the Young's modulus at three different strain rates and the total work of fracture toughness at three different notch lengths. The polymer composite was analyzed by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, wide angle x-ray diffraction, and transmission electron microscopy. 3% and 5% clay systems at various compatibilizer (PPMA) loadings were prepared by three different mixing routes for the isotropic sheets, produced by compression moulding, and tensile bars, produced by injection moulding process. Die-drawn oriented tensile bars were drawn to draw ratio of 2, 3 and 4. The results from the Queen's University Belfast samples showed a decrement in tensile strength at yield. This might be explained by poor bonding, which refers to poor dispersion. Voids that can be supported by intercalated PP/clay phases might be responsible for improvement of elongation at break. The use of PPMA and an intensive mixing regime with a two-step master batch process overcame the compatibility issue and achieved around 40% and 50% increase in modulus for 3% and 5% clay systems respectively. This improvement of the two systems was reduced after drawing to around 15% and 25% compared with drawn PP. The work of fracture is increased either by adding nanoclay or by drawing to low draw ratio, or both. At moderate and high draw ratios, PPNCs may undergo either an increase in the size of microvoids at low clay loading or coalescence of microvoids at high clay loading, eventually leading to an earlier failure than with neat PP. The adoption of PPMA loading using an appropriate mixing route and clay loading can create a balance between the PPMA stiffness effect and the degree of bonding between clay particles and isotropic or oriented polymer molecules. Spherulites size, d-spacing of silicate layers, and nanoparticles distribution of intercalated microtactoids with possible semi-exfoliated particles have been suggested to optimize the final PPNCs property.
2

An investigation of oriented polymers for power transmission applications

Vgenopoulos, Dimitrios January 2012 (has links)
The feasibility of using oriented polymer technology in the design and manufacture of mechanical power transmission belts has been investigated. Working from an initial selection of polymers a die-drawing technique for orienting the polymers was devised, and the static and dynamic mechanical properties of the oriented polymers were investigated. These results indicated that PP, PBT, PPS and PEEK were suitable for further research. Of these 4 materials PBT was selected as the most appropriate material for belt manufacture based on cost, processability (drawing temperature, natural draw ratio) and limitations of laboratory equipment. A technique based on free-tensile drawing combined with simultaneous rotational motion was designed and used to manufacture oriented PBT flat belts from cylindrical injection moulded preforms. The technique used a tensile machine with two pulley-clamps, a fitted heated chamber and an electric motor to provide rotational motion to the belt during drawing. Two types of oriented PBT flat belts with different cross sections were produced successfully, termed 'thick' and 'thin'. These belts were tested on a purpose-built rig comprising two equal diameter pulleys, one driven by an electric motor and the other connected to a generator to provide load. The belt life and power transmission performance was investigated at various conditions of speed, transmitted torque and tension, and the results indicated that despite their smaller cross section 'thin' flat belts demonstrated up to 3 times longer life. However life was only 100hours, which was very low compared with conventional flat belts that last for many thousands of hours at higher speeds and much greater power transmission capacity. Synchronous belts were then produced through the same manufacturing method used for flat belts. This aspect of the research concentrated on the initial pitch design and size, i.e. the timing. Initially a rectangular tooth profile was selected for its simplicity in terms of manufacture. The produced belts exhibited high pitch length variation as well as deformed teeth and were not usable for synchronous power transmission. An extra timing feature was included to control orientation; reducing the pitch length variation enabling consistent tooth production. It was observed that the areas between the extra timing feature and the tooth edges did not orient completely with some regions remaining undrawn. Finite Element Analysis (FEA) was used to predict the drawing behaviour of different shapes and dimensions of the timing features. The results suggested that a 4mm wide and 7mm long slot provided the highest possible extension and the minimum non-oriented regions on the groove. Whilst, the thickness and width of the drawn belt timing features showed differences to the FEA predictions, manufactured synchronous belts based on that design had much better controlled dimensions and the lowest achieved pitch length variation ( ±1%), compared to initial attempts. It is concluded that oriented polymers have the potential to be used in power transmission belts since they offer higher stiffness, tensile strength and creep resistance compared with isotropic polymers that are currently used in commercially available belts such as thermoplastic polyurethane (TPU) and polyvinyl chloride (PVC). The main disadvantages were the lack of dimensional stability and number of cycle to failure.
3

Tensile and fracture behaviour of isotropic and die-drawn polypropylene-clay nanocomposites. Compounding, processing, characterization and mechanical properties of isotropic and die-drawn polypropylene/clay/polypropylene maleic anhydride composites

Al-Shehri, Abdulhadi S. January 2010 (has links)
As a preliminary starting point for the present study, physical and mechanical properties of polypropylene nanocomposites (PPNCs) for samples received from Queen's University Belfast have been evaluated. Subsequently, polymer/clay nanocomposite material has been produced at Bradford. Mixing and processing routes have been explored, and mechanical properties for the different compounded samples have been studied. Clay intercalation structure has received particular attention to support the ultimate objective of optimising tensile and fracture behaviour of isotropic and die-drawn PPNCs. Solid-state molecular orientation has been introduced to PPNCs by the die-drawing process. Tensile stress-strain measurements with video-extensometry and tensile fracture of double edge-notched tensile specimens have been used to evaluate the Young¿s modulus at three different strain rates and the total work of fracture toughness at three different notch lengths. The polymer composite was analyzed by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, wide angle x-ray diffraction, and transmission electron microscopy. 3% and 5% clay systems at various compatibilizer (PPMA) loadings were prepared by three different mixing routes for the isotropic sheets, produced by compression moulding, and tensile bars, produced by injection moulding process. Die-drawn oriented tensile bars were drawn to draw ratio of 2, 3 and 4. The results from the Queen's University Belfast samples showed a decrement in tensile strength at yield. This might be explained by poor bonding, which refers to poor dispersion. Voids that can be supported by intercalated PP/clay phases might be responsible for improvement of elongation at break. The use of PPMA and an intensive mixing regime with a two-step master batch process overcame the compatibility issue and achieved around 40% and 50% increase in modulus for 3% and 5% clay systems respectively. This improvement of the two systems was reduced after drawing to around 15% and 25% compared with drawn PP. The work of fracture is increased either by adding nanoclay or by drawing to low draw ratio, or both. At moderate and high draw ratios, PPNCs may undergo either an increase in the size of microvoids at low clay loading or coalescence of microvoids at high clay loading, eventually leading to an earlier failure than with neat PP. The adoption of PPMA loading using an appropriate mixing route and clay loading can create a balance between the PPMA stiffness effect and the degree of bonding between clay particles and isotropic or oriented polymer molecules. Spherulites size, d-spacing of silicate layers, and nanoparticles distribution of intercalated microtactoids with possible semi-exfoliated particles have been suggested to optimize the final PPNCs property. / SABIC
4

An investigation of oriented polymers for power transmission applications

Vgenopoulos, Dimitrios January 2012 (has links)
The feasibility of using oriented polymer technology in the design and manufacture of mechanical power transmission belts has been investigated. Working from an initial selection of polymers a die-drawing technique for orienting the polymers was devised, and the static and dynamic mechanical properties of the oriented polymers were investigated. These results indicated that PP, PBT, PPS and PEEK were suitable for further research. Of these 4 materials PBT was selected as the most appropriate material for belt manufacture based on cost, processability (drawing temperature, natural draw ratio) and limitations of laboratory equipment. A technique based on free-tensile drawing combined with simultaneous rotational motion was designed and used to manufacture oriented PBT flat belts from cylindrical injection moulded preforms. The technique used a tensile machine with two pulley-clamps, a fitted heated chamber and an electric motor to provide rotational motion to the belt during drawing. Two types of oriented PBT flat belts with different cross sections were produced successfully, termed 'thick' and 'thin'. These belts were tested on a purpose-built rig comprising two equal diameter pulleys, one driven by an electric motor and the other connected to a generator to provide load. The belt life and power transmission performance was investigated at various conditions of speed, transmitted torque and tension, and the results indicated that despite their smaller cross section 'thin' flat belts demonstrated up to 3 times longer life. However life was only 100 hours, which was very low compared with conventional flat belts that last for many thousands of hours at higher speeds and much greater power transmission capacity. Synchronous belts were then produced through the same manufacturing method used for flat belts. This aspect of the research concentrated on the initial pitch design and size, i. e. the timing. Initially a rectangular tooth profile was selected for its simplicity in terms of manufacture. The produced belts exhibited high pitch length variation as well as deformed teeth and were not usable for synchronous power transmission. An extra timing feature was included to control orientation; reducing the pitch length variation enabling consistent tooth production. It was observed that the areas between the extra timing feature and the tooth edges did not orient completely with some regions remaining undrawn. Finite Element Analysis (FEA) was used to predict the drawing behaviour of different shapes and dimensions of the timing features. The results suggested that a 4mm wide and 7mm long slot provided the highest possible extension and the minimum non-oriented regions on the groove. Whilst, the thickness and width of the drawn belt timing features showed differences to the FEA predictions, manufactured synchronous belts based on that design had much better controlled dimensions and the lowest achieved pitch length variation ( ±1%), compared to initial attempts. It is concluded that oriented polymers have the potential to be used in power transmission belts since they offer higher stiffness, tensile strength and creep resistance compared with isotropic polymers that are currently used in commercially available belts such as thermoplastic polyurethane (TPU) and polyvinyl chloride (PVC). The main disadvantages were the lack of dimensional stability and number of cycle to failure. / Polymer IRC; The University of Bradford; The Gates Corporation

Page generated in 0.0656 seconds