Spelling suggestions: "subject:"ornithine decarboxylase."" "subject:"carnithine decarboxylase.""
1 |
THE REGULATION OF ORNITHINE DECARBOXYLASE ACTIVITY IN CONTINUOUSLY DIVIDING CELLS AND QUIESCENT CELLS STIMULATED TO PROLIFERATECress, Anne E. January 1980 (has links)
The objective of this research was to uncover possible regulatory differences in comparable inductions of ornithine decarboxylase (ODC) in two growth states. ODC activity increases 4-5 fold prior to DNA synthesis both in synchronous populations of continuously dividing cells and in quiescent cells stimulated to proliferate. The regulation of this particular enzyme activity in the two conditions is distinct in three ways. First, the addition of 2.0 mM hydroxyurea (HU) will block ODC induction in continuously dividing cells, while having no effect on ODC induction in stimulated quiescent cells. ODC induction in continuously dividing cells is remarkably sensitive to hydroxyurea, whose major effect is in limiting dATP pools. These data also indicate that ODC induction as a cell cycle event occurring previous to DNA synthesis, is not essential for transit of cells from G₁ into S phase. During a HU block, when ODC induction is prevented, cells arrest in early S phase. In addition, after HU is removed, 20% of the cellular DNA is synthesized before ODC activity ever increases. Experiments pursuing the mechanism whereby HU inhibits ODC induction showed that HU added after the induction has no effect on the enzyme activity. Administration of HU one hour previous to the induction prevents it. Therefore, HU is acting to prevent the process of ODC induction rather than simply effecting the enzyme activity. The decrease in ODC induction is not the consequence of a general cell cycle effect since another biochemical marker of the cell cycle (the activity and isozyme forms of adenosine 3', 5'-monophosphate dependent protein kinase) is not inhibited. In addition, general RNA and protein synthesis rates are not altered during an HU block. The inhibition of ODC is not due to a direct effect of HU on the enzyme, a diamine effect or an induction of the ODC antizyme. Hydroxyurea inhibits ribonucleoside diphosphate reductase (RdPR) and chelates ferrous ion. Experiments with a hydroxyurea analog, a less efficient inhibitor of RdPR, is less capable of inhibiting ODC activity. Addition of dithiothreitol resulting in an increased ferrous ion concentration, does not rescue ODC activity. Therefore, the induction of ODC in continuously dividing cells is presumably dependent upon deoxyribonucleoside triphosphates or their metabolites. The second distinct difference in ODC induction is that the expression of ODC in quiescent cells stimulated to proliferate is biphasic as these cells traverse G₁ and enter S phase. Only one peak of activity is apparent in synchronous cycling G₁ cells. The time interval between the first peak of ODC activity and the onset of DNA synthesis is approximately five hours longer in non-dividing cells stimulated to proliferate than in continuously dividing cells. This implies a different role of ODC in the two growth states. The third difference is that the induction of ODC in cells stimulated from quiescence toward DNA synthesis is sensitive to a microtubule inhibitor, colcemid. A microfilament inhibitor, cytochalasin B has less of an effect. In contrast, ODC induction in continuously cycling cells is not altered by colcemid. The biological half-life of ODC, when examined in both growth states was not different. The results presented here suggest that the regulation of an identical enzyme activity intimately connected with proliferative processes is different depending upon the growth state. The induction of ODC is continuously dividing cells occurs closer in time to DNA synthesis, is dependent upon deoxyribonucleoside triphosphate metabolism and independent of a microtubule inhibitor, colcemid. Further, although a temporal correlation between ODC induction and DNA synthesis exists, ODC is not essential for cellular progression into S phase but is required for the completion of DNA synthesis.
|
2 |
Structure of ornithine decarboxylase from mouse /Kern, Andrew David, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 168-181). Available also in a digital version from Dissertation Abstracts.
|
3 |
On the regulation of ornithine decarboxylaseLövkvist Wallström, Eva. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Added t.p. with thesis statement inserted. Includes bibliographical references.
|
4 |
On the regulation of ornithine decarboxylaseLövkvist Wallström, Eva. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Added t.p. with thesis statement inserted. Includes bibliographical references.
|
5 |
PURIFICATION AND CHARACTERIZATION OF BOVINE LIVER ORNITHINE DECARBOXYLASEHaddox, Mari Kristine January 1980 (has links)
Ornithine decarboxylase has been purified to apparent homogeneity from thioacetamide-stimulated calf liver. The purification process, which has been developed to circumvent the lability of the enzyme, employs ion exchange chromatography, gel filtration, hydroxylapatite chromatography, non-denaturing gel electrophoresis, and sulfhydryl affinity chromatography. The enzyme is purified 71,500-fold to a final specific activity of 286,000 pmol/min/mg protein. Non-denaturing gel electrophoresis indicates a single protein present in the final preparation. The enzyme has a Stokes radius of 3.14 nm as indicated by gel filtration and a monomeric molecular weight of 52,000 daltons as indicated by denaturing gel electrophoresis. The K(m) values for ornithine and pyridoxal phosphate are 0.16 mM and 2.5 μM, respectively. Putrescine inhibits the enzyme (Kᵢ 10mM). The existence of three ionic forms of ornithine decarboxylase is suggested by fractionation of the preparation by gradient sievorptive chromatography. Mammalian ornithine decarboxylase is apparently a metalloenzyme. A variety of structurally distinct metal chelators inhibit the enzyme. A non-chelating analog of the most potent chelator, 1,10-phenanthroline, is without effect. The order of efficacy of the chelators suggests the involvement of a metal from the transition series. Incubation of the enzyme with charcoal or Cibacron Blue-Agarose results in a loss of catalytic activity suggesting that the ornithine decarboxylase may also contain a bound nucleotide.
|
6 |
Neurohumoral regulation of adrenal ornithine decarboxylase activityAlamzàn, Guillermina. January 1982 (has links)
The aim of this study has been to elucidate the neural pathways involved in the regulation of adrenal ornithine decarboxylase (ODC) activity. Administration of the dopamine-receptor agonists apomorphine (APM) and piribedil (PBD) to rats led to an increase in ODC activity of both the adrenal medulla and cortex. These effects were blocked by giving the animals the dopaminergic antagonist haloperidol. The APM-induced increase in adrenomedullary ODC activity was largely prevented by denervation of the adrenal, transection of the spinal cord, and transection of the mesencephalon-diencephalon. Section of ventral spinal roots reduced the induction to varying extents, depending on the number of roots cut and their location between T(,4) and T(,12). The inducing effect of APM on adrenocortical ODC was abolished by hypophysectomy. Splanchnicotomy, rhizotomy and bilateral adrenal demedullation each attenuated the action of the drug. In contrast to this, section of the spinal cord or surgical isolation of the hypothalamus (preparation of "hypothalamic island") potentiated its effect. Impairment of serotonergic nerve function by systemic administration of p-chlorophenylalanine and intraventricular injection of 5,6'-dihydroxytryptamine or electrolytic potentiated the effect of APM in the adrenal medulla, but reduced it in the cortex. These observations suggest that adrenal ODC activity is predominantly regulated by one or more central facilitatory dopaminergic pathways. The pathway for the regulation of the medullary enzyme involves nuclei in the diencephalon-telencephalon and ultimately acts through the sympathetic nervous sytem. The pathway for the cortex involves the hypothalamus and acts via the anterior pituitary gland. These pathways include serotonergic components, which have opposite net effects on the induction of ODC produced by APM: inhibitory for the medulla and facilitatory for the cortex.
|
7 |
Attempted routes towards the synthesis of fluorinated analogues of ornithine as potential inhibitors of ornithine decarboxylase /De Villiers, Jandré. January 2007 (has links)
Thesis (MSc)--University of Stellenbosch, 2007. / Bibliography. Also available via the Internet.
|
8 |
The role of polyamines in cellular and molecular events in the wool follicle /Nancarrow, Michelle Jane. January 1995 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, Dept. of Animal Science, 1995? / Includes bibliographical references (leaves 255-280).
|
9 |
Neurohumoral regulation of adrenal ornithine decarboxylase activityAlamzàn, Guillermina January 1982 (has links)
No description available.
|
10 |
Amino acid sequence requirements for ornithine decarboxylase activityChu, Yi-wen, 1962- January 1988 (has links)
ODC activity of the altered proteins was measured and compared to that of the full length 461 amino acid containing ODC. Mouse ODC cDNA sequences were deleted from either 5' or 3' ends using exonuclease III and Mung Bean nuclease treatments. An internal deletion was obtained by Hinc II and Bcl I restriction endonuclease digestion of the full length ODC cDNA. Capped mRNAs were synthesized in vitro using the resulting deleted DNA as templates, and the protein was translated in vitro. The results indicate that the protein in which translation initiates at internal AUG start codons does not have any activity. The protein with 39 amino acids deleted from carboxy-terminus maintains 12% of the activity, while deletion of greater than 79 amino acids have no activity. An internal deletion from amino acid 290 to 331 and which may contain the suspected ornithine binding site has no activity. These results suggest that the entire amino acid sequence of mouse ODC is required for full activity of the enzyme.
|
Page generated in 0.0664 seconds