Spelling suggestions: "subject:"orthogonal function"" "subject:"arthogonal function""
1 |
THE BRIDGE FUNCTION TELEMETRY SYSTEMQishan, Zhang 11 1900 (has links)
International Telemetering Conference Proceedings / November 04-07, 1991 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Based on the theory of orthogonality, two orthogonal multiplex systems called frequency division multiplexing(FDM) and time division multiplexing(TDM) have long been developed. Therefore, many people tend to think that these two systems represent the ONLY two multiplexing methods that satisfy the orthogonal condition. However, after years of research, we've discovered a new kind of orthogonal functions called Bridge functions. The Bridge functions have the every promise of being the basis for constructing an entirely new kind of telemetry system, which has been named as sequency division multiplexing(SDM).
Since the Bridge functions are the mathematical basis of the new telemetry system, we will give a summary of the Bridge functions at first. We have successfully constructed an experimental prototype called BAM-FM system in our laboratory. The main ideas, block diagram, operational principles, and technical problems are discussed in this paper. All our work has proved that SDM has not only research interests, but also practical value.
|
2 |
THE BRIDGE FUNCTION TELEMETRY SYSTEMQishan, Zhang 11 1900 (has links)
International Telemetering Conference Proceedings / November 04-07, 1991 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Based on the theory of orthogonality, two orthogonal
multiplex systems called frequency division
multiplexing (FDM) and time division multiplexing (TDM) have
long been developed. Therefore, many people tend to think
that these two systems represent the ONLY two multiplexing
methods that satisfy the orthogonal condition. However,
after years of research, we've discovered a new kind of
orthogonal functions called Bridge functions. The Bridge
functions have the every promise of being the basis for
constructing an entirely new kind of telemetry system, which
has been named as sequency division multiplexing (SDM).
Since the Bridge functions are the mathematical basis of the
new telemetry system, we will give a summary of the Bridge
functions at first. We have successfully constructed an
experimental prototype called BAM-FM system in our
laboratory. The main ideas, block diagram, operational
principles, and technical problems are discussed in this
paper. All our work has proved that SDM has not only
research interests, but also practical value.
|
3 |
Multi-Dimensional Error Analysis of Nearshore Wave Modeling Tools, with Application Toward Data-Driven Boundary CorrectionJiang, Boyang 2010 December 1900 (has links)
As the forecasting models become more sophisticated in their physics and possible depictions of the nearshore hydrodynamics, they also become increasingly sensitive to errors in the inputs. These input errors include: mis-specification of the input parameters (bottom friction, eddy viscosity, etc.); errors in input fields and errors in the specification of boundary information (lateral boundary conditions, etc.). Errors in input parameters can be addressed with fairly straightforward parameter estimation techniques, while errors in input fields can be somewhat ameliorated by physical linkage between the scales of the bathymetric information and the associated model response. Evaluation of the errors on the boundary is less straightforward, and is the subject of this thesis.
The model under investigation herein is the Delft3D modeling suite, developed at Deltares (formerly Delft Hydraulics) in Delft, the Netherlands. Coupling of the wave (SWAN) and hydrodynamic (FLOW) model requires care at the lateral boundaries in order to balance run time and error growth. To this extent, we use perturbation method and spatio-temporal analysis method such as Empirical Orthogonal Function (EOF) analysis to determine the various scales of motion in the flow field and the extent of their response to imposed boundary errors. From the Swirl Strength examinations, we find that the higher EOF modes are affected more by the lateral boundary errors than the lower ones.
|
4 |
Distinguishing Processes that Induce Temporal Beach Profile Changes Using Principal Component Analysis: A Case Study at Long Key, West-central FloridaDavis, Denise Marie 01 January 2013 (has links)
The heavily developed Long Key is located in Pinellas County in west-central Florida. The structured Blind Pass at the north end of the barrier island interrupts the southward longshore sediment transport, resulting in severe and chronic beach erosion along the northern portion of the island. Frequent beach nourishments were conducted to mitigate the erosion. In this study, the performance of the most recent beach nourishment in 2010 is quantified through time-series beach profile surveys. Over the 34-month period, the nourished northern portion of the island, Upham Beach, lost up to 330 m3/m of sand, with a landward shoreline retreat of up to 100 m. The middle portion of the island gained up to 25 m3/m of sand, benefiting from the sand lost from Upham Beach. The southern portion of Long Key lost a modest amount of sediment, largely due to Tropical Storm Debby, which approached from the south in June 2012.
The severe erosion along Upham Beach is induced by a large negative longshore transport gradient. The beach here has no sand bar and retreated landward persistently over the 34-month study period. In contrast the profiles in the central section of the island generally have a sand bar which moved landward and seaward in response to seasonal and storm-induced wave-energy changes. The sand volume across the entire profile in the central portion of the island is mostly conserved.
Two typical example beach profiles, LK3A and R157, were selected to examine the ability of the commonly used principal component analysis (PCA), also commonly known as empirical orthogonal function analysis (EOF), to identify beach profile
ix
changes induced by longshore and cross-shore sediment transport gradients. For the longshore-transport driven changes at the non-barred profile LK3A, the principal eigenvector accounted for over 91% of the total variance, with a dominant broad peak in the cross-shore distribution. At the barred R157, the profile changes were caused mainly by cross-shore transport gradients with modest contribution from longshore transport gradient; eigenvalue one only accounted for less than 51% of the total variance, and eigenvalues two and three still contributed considerably to the overall variance.
In order to verify the uniqueness of the PCA results from LK3A and R157, five numerical experiments were conducted, simulating changes at a barred and non-barred beach driven by longshore, cross-shore, and combined sediment transport gradients. Results from LK3A and R157 compare well with simulated beach erosion (or accretion) due to variable longshore sediment transport gradients and due to both cross-shore and longshore sediment transport gradients, respectively. Different PCA results were obtained from different profile change patterns.
|
5 |
An analysis of moisture environments associated with mature North Atlantic tropial cyclonesBerislavich, Katherine 08 August 2023 (has links) (PDF)
Tropical cyclone (TC) intensity and structure are affected by their environments, including sea surface temperature, vertical wind shear, and atmospheric moisture. Analyses of TC environments often rely on area-averaged quantities, yet the spatial variability of these fields can affect TC behavior, such as moisture distribution impacting where and how much rain falls. This study identifies spatial patterns of environmental moisture surrounding mature North Atlantic TCs during 2000-2021 in shear of less than 20 knots. Empirical orthogonal function analysis of total column water vapor reveals six dominant patterns. These patterns account for nearly 67% of the variance in the dataset and are affected by geographic location and large-scale atmospheric phenomena. Mid-level ventilation appears more likely in certain patterns. Future work will explore radar and passive microwave observations for cases in each pattern to quantify the physical impacts of these moisture patterns on mature TCs.
|
6 |
Small-Scale River Plume Dynamics at the Gaoping River MouthHuang, Sheng-feng 26 July 2012 (has links)
A major part of the terrestrial sediment in the ocean comes from the land via river plume. There are four stages in sediment dispersal from rivers into the sea: supply via plume, initial deposition, resuspension and transport by waves and currents or by the slope failure, and long-term net accumulation. We can understand the dispersion and transport of the river plume by in situ observations of hydrodynamic of the plume field. Therefore, it is helpful to study river plume hydrodynamics, such as winds, tides, waves, and currents. The purpose of this study is to identify the type of plume dynamics by analyzing the temporal and spatial variability of hydrological structures observed around the Gaoping River mouth.
We observed the bottom and surface time series of temperature, salinity, turbidity, suspended sediment concentration, and velocity profile by instrument mounted at the tetrapods and a moored buoy during July 28 to 30 in 2009 and July 30 to August 2 in 2011. Besides, we investigated the spatial structures of the river plume in Gaoping River mouth by using a fishing boat in 2009. We also acquired satellite images to assist our study.
The results showed that the river discharges during 2009 was lower than daily average discharge. Combined the temporal and spatial observations and satellite images, we determined that the river plume turned west during the ebb tide was influenced by Coriolis force and winds. The buoyancy-driven current velocity was 0.15 m/s and the maximum of wind-driven current velocity was 0.30 m/s. The wind strength index (Ws) determines whether a plume¡¦s along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. If |W_s | > 1 on average the wind velocity more than 5.9 m/s. The wind velocity reached this threshold during most of the ebb periods, and around that value in the flood time. Flood currents combined with cross-shore wind pushed the river plume to swing to the east. The data were analyzed by empirical orthogonal function (EOF) analysis. The results indicated that winds and waves were the main factors influencing plume dynamics during low-discharge period.
During the field experiment in 2011, the river discharge was greater than daily average discharge. The buoyancy-driven and the maximum of wind-driven current velocities were 0.30 and 0.12 m/s, respectively. The wind velocity did not reach the threshold that was 11.67 m/s. The buoyancy-driven current was more significant than wind-driven current. By analyzing the ocean color of satellite images, the river plume was spreading from the river mouth and toward west during ebb. The time series data also showed that there was plume signal at the same time. The average cross-shore current velocity was 0.52 m/s, being larger than the buoyancy-driven current. Therefore, the tide was the main factor deciding where the plume discharged. The first eigemode of EOF suggested that current was the most important factor influencing plume dynamics during high-discharge period. The second eignmode described the dominant influence of wind.
|
7 |
Analysis Of Groundwater Dynamics In Semi-Arid Regions : Effect Of Rainfall Variability And PumpingJaveed, Yusuf 10 1900 (has links) (PDF)
No description available.
|
8 |
Prediction of estuarine morphological evolutionSavant, Gaurav 09 August 2008 (has links)
Estuaries are vital environmental and economic resources, providing habitat for thousands of species, absorbing runoff, and supporting recreation and commerce. Yet, despite their importance, estuaries are threatened by human activities. Empirical Orthogonal Function (EOF) analysis and Cross Spectral techniques were used in the analysis and prediction of estuarine morphology. The estuaries selected for study were Suisun Bay, CA and Mobile Bay, AL. It was found that EOF is an effective and efficient technique to analyze morphology, a coupling with cross spectral methods such as Fourier Transformation (FFT) resulted in determination of forcing functions responsible for imparting variance to the bathymetry. In both the estuaries it was found that the first two eigenvalues represented almost 80% of the morphological/bathymetric dataset. The second eigenfunction was found to be closely dependent on the freshwater inflows to the estuaries. EOF analysis on Suisun Bay revealed that the bay is depositional particularly in the shallow bays of Honker and Grizzly, whereas the main channels as well as Carquinez Straits maintained their depths throughout the period studied. Utilizing a Cross spectral technique, Amplitude Response Function (ARF), temporal eigenfunctions for the bay were determined for year 2100. The temporal eigenfunctions were predicted for cases where river inflows to the bay were varied by 1 standard deviation unit. These predicted eigenfunction values combined with the eigenvalues resulted in the recovery of predicted depths for year 2100. It was found that Suisun Bay remains depositional through the year 2100 and maintains depths in the main channels as well as Carquinez Straits. This depositional behavior results in the decrease of bay volume to almost 40% of the volume in 1989. EOF analysis on Mobile Bay revealed that the bay is predominantly depositional except in the navigation channel and the shoreline of the Bay. The navigation channel maintaining it depth is attributed to the regular dredging carried to facilitate shipping. The second temporal eigenfunction showed a close correlation with river inflows as in the case of Suisun Bay. However, a cross correlation performed on the second temporal eigenfunction and inflows revealed that the response of the eigenfunction is perturbed by almost 9 years, as opposed to 6 to 9 years for Suisun Bay. An ARF on the temporal eigenfunctions combined with a reverse EOF resulted in the formation of bathymetric datasets for the year 2100 for inflows variation of 1 standard deviation. It was revealed that increasing the flows results in an increase of bay volume by approximately 30% and a decrease in flows results in a loss of volume by approximately 20%.
|
9 |
Development of a System Identification Tool for Subscale Flight TestingArustei, Adrian January 2019 (has links)
Aircraft system identification has been widely used to this day in applications like control law design, building simulators or extending flight envelopes. It can also be utilized for determining flight-mechanical characteristics in the preliminary design phase of a flight vehicle. In this thesis, three common time-domain methods were implemented in MATLAB for determining the aerodynamic derivatives of a subscale aircraft. For parameter estimation, the equation-error method is quick, robust and can provide good parameter estimates on its own. The output-error method is computationally intensive but keeps account of the aircraft's evolution in time, being more suitable for fine-tuning predictive models. A new model structure is identified using multivariate orthogonal functions with a predicted squared error stopping criteria. This method is based on linear regression (equation-error). The code written is flexible and can also be used for other aircraft and with other aerodynamic models. Simulations are compared with experimental data from a previous flight test campaign for validation. In the future, this tool may help taking decisions in conceptual design after a prototype is tested.
|
10 |
Bio-optical characterization of the Salish Sea, Canada, towards improved chlorophyll algorithms for MODIS and Sentinel-3Phillips, Stephen Robert 22 December 2015 (has links)
The goal of this research was to improve ocean colour chlorophyll a (Chla) retrievals in the coastal Case 2 waters of the Salish Sea by characterizing the main drivers of optical variability and using this information to parameterize empirical algorithms based on an optical classification. This was addressed with three specific objectives: (1) build a comprehensive spatio-temporal data set of in situ optical and biogeochemical parameters, (2) apply a hierarchical clustering analysis to classify above-water remote sensing reflectance (Rrs) and associated bio-optical regimes, (3) optimize and validate class-specific empirical algorithms for improved Chla retrievals.
Biogeochemical and optical measurements, acquired at 145 sites, showed considerable variation; Chla (mean=1.64, range: 0.10 – 7.20 µg l-1), total suspended matter (TSM) (3.09, 0.82 – 20.69 mg l-1), and absorption by chromophoric dissolved organic matter (a_cdom (443)) (0.525, 0.007 – 3.072 m-1), thus representing the spatial and temporal variability of the Salish Sea. A comparable range was found in the measured optical properties; particulate scattering (b_p (650)) (1.316, 0.250 – 7.450 m-1), particulate backscattering (b_bp (650)) (0.022, 0.005 – 0.097 m-1), total beam attenuation coefficient (c_t (650)) (1.675, 0.371 – 9.537 m-1), and particulate absorption coefficient (a_p (650)) (0.345, 0.048 – 2.020 m-1). Empirical orthogonal function (EOF) analysis revealed 95% of the Rrs variance was highly correlated to b_p (r = 0.90), b_bp (r = 0.82), and TSM concentration (r = 0.80), suggesting a strong influence from riverine systems in this region. Hierarchical clustering on the normalized Rrs revealed four spectral classes. Class 1 is defined by high overall Rrs magnitudes in the red, indicating more turbid waters, Class 2 showed high Rrs values in the red and well defined fluorescence and absorption features, indicated by a high Chla and TSM presence, Class 3 showed low TSM influence and more defined Chla signatures, and Class 4 is characterized by overall low Rrs values, suggesting more optically clear oceanic waters. Spectral similarities justified a simplification of this classification into two dominant water classes – (1) estuarine class (Classes 1 and 2) and (2) oceanic class (Classes 3 and 4) – representing the dominant influences seen here.
In situ Chla and above-water remote sensing reflectance measurements, used to validate and parameterize the OC3M/OC3S3, two-band ratio, FLH and, modified FLH (ModFLH) empirical algorithms, showed a systematic overestimation of low Chla concentrations and underestimation of higher Chla values for all four algorithms when tuned to regional data. FLH and ModFLH algorithms performed best for these data (R2 ~ 0.40; RMSE ~ 0.32). Algorithm accuracy was significantly improved for the class-specific parametrizations with the two-band ratio showing a strong correlation to the Chla concentrations in the estuarine class (R2 ~ 0.71; RMSE ~ 0.33) and the ModFLH algorithm in the oceanic class (R2 ~ 0.70; RMSE ~ 0.26). These results demonstrated the benefit of applying an optical classification as a necessary first step into improving Chla retrievals from remotely sensed data in the contrasted coastal waters of the Salish Sea. With accurate Chla information, the health of the Salish Sea can be viably monitored at spatial and temporal scales suitable for ecosystem management. / Graduate / 0416 / stephen.uvic@gmail.com
|
Page generated in 0.0773 seconds