• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CMOS mobility-compensated time reference for crystal replacement

Zomagboguelou, Agossou Wilfried January 2015 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2015. / Made available in DSpace on 2016-10-19T12:49:21Z (GMT). No. of bitstreams: 1 339514.pdf: 5834245 bytes, checksum: 19a6493edcb4f7393ff7e0b94e01ac0f (MD5) Previous issue date: 2015 / Apesar da existência de muitas alternativas para geração de base de tempo, não há ainda uma referencia de tempo totalmente integrável que possa oferecer simultaneamente alta precisão, baixa potência e custo de produção reduzido; portanto, não há uma referência de tempo ideal capaz de ter performance melhor do que os osciladores a quartzo disponíveis no mercado. O objetivo principal desse trabalho é de tentar encontrar uma solução em tecnologia CMOS de uma referencia de tempo capaz de substituir osciladores a quartzo na frequência de 32 kHz. Isso implica em projetar um oscilador de baixa potencia, alta precisão e que seja pouco sensível as variações de processo, de tensão e de temperatura. Os elementos básicos do oscilador de relaxação deste trabalho são um transistor zero-Vt que opera como resistor e uma fonte de corrente específica de transistor zero-Vt. Foi desenvolvido também um Schmitt trigger com entrada de corrente e uma fonte de corrente controlada por tensão capaz de acompanhar a variação de corrente devido as variações de processo, tensão e temperatura. As medidas do oscilador fabricados mostraram uma variação de +/- 30ppm/°C na faixa de temperatura de -20°C ate 80°C e uma variação menor do que +/- 500ppm/V para tensão de alimentação entre 0.7 V e 1.8 V. As medidas da estabilidade em frequência mostraram uma variação de +/- 500ppm para estabilidade de longo termo, e um jitter de 2 nano seconds para estabilidade curto termo.<br> / Abstract: Despite many alternatives for time generation, no CMOS fully-integrated time reference offers simultaneously high accuracy, low power consumption, and low cost, and, thus, no ideal time reference suitable to replace the xtalclockis available. The main aim of this work is to contribute to find a solution to this problem, which is to realize a low-cost, low-power CMOS time reference circuit that is insensitive to PVT (Process, Voltage, and Temperature) variations. The basic element of the relaxation oscillator is a zero-VtMOSFET that operates as a resistor and a current source which tracks the specific current of the zero-Vt transistor. The design presented here uses acurrent mode Schmitt trigger and a voltage controlled current source, which can track the current variation due to PVT variations. The frequency of oscillation, proportional to the mobility, is compensated by the thermal voltage. The proposed time reference, fabricated in a 180 nm CMOS technology has been designed for 32 kHz. Test and measurement results show a variation of +/- 30ppm/°C from -20°C to 80°C, and less than +/- 500ppm/V for a variation of the supply voltage between 0.7 V to 1.8 V. As regards frequency stability, measurements have shown a variation less than +/- 500ppm for long term stability, and an rms jitter of 2 nanoseconds (66 ppm) for short term stability.
2

Transformada wavelet aplicada a análise automática de oscilografias de curta duração em unidades geradoras / Wavelet transform applied automatic analysis of short oscillograms generating units

Pereira, Sidnei 31 March 2016 (has links)
Este trabalho tem como foco de estudo a análise automática de registros de perturbações em unidades geradoras do sistema elétrico. Propõe-se um método, baseado na transformada wavelet, para aplicar aos registros de perturbações de curta duração (forma de onda) e detectar instantes de faltas em geradores, realizar a segmentação dos registros e extrair informações que caracterizem a falta. Como saída deste método, se obtém um conjunto de informações representativas dos sinais monitorados em unidades geradoras. Essas informações podem ser aplicadas a um sistema especialista voltado para a classificação de faltas e demais condições anormais de operação. O grande volume de dados, produzidos pelos registradores digitais de perturbações do sistema elétrico, justifica a pesquisa e a busca por métodos de análise automática que auxiliem o trabalho dos analistas em busca das causas das perturbações. A revisão bibliográfica apontou as possíveis aplicações para as oscilografias e o estado da arte dessas. A revisão conceitual do padrão COMTRADE e da transformada wavelet embasa a escolha do método adequado à solução do problema. Testes foram realizados para determinar a melhor wavelet mãe no processo de segmentação. O método proposto foi aplicado a cinco estudos de casos com registros de oscilografias reais e o resultado obtido confirmou a eficiência deste. Espera-se, com esta pesquisa, aperfeiçoar o processo de análise pós-operação de ocorrências no Sistema Interligado Nacional, tendo como resultado direto a redução no tempo de indisponibilidade de equipamentos, como geradores. / The focus of this work is the automatic analysis of disturbance records for electrical power generating units. The main proposition is a method based on wavelet transform applied to short-term disturbance records (waveform records). The goal of the method is to detect the time instants of recorded disturbances and extract meaningful information that characterize the faults. The result is a set of representative information of the monitored signals in power generators. This information can be further classified by an expert system (or other classification method) in order to classify the faults and other abnormal operating conditions. The large amount of data produced by digital fault recorders during faults justify the research of methods to assist the analysts in their task of analysing the disturbances. The literature review pointed out the state of the art and possible applications for oscillography records. The review of the COMTRADE standard and wavelet transform underlines the choice of the method for solving the problem. The conducted tests lead to the determination of the best mother wavelet for the segmentation process. The application of the proposed method to five case studies with real oscillographic records confirmed the accuracy and efficiency of the proposed scheme. With this research, the post-operation analysis of occurrences is improved and as a direct result is the reduction of the time that generators are offline.
3

Transformada wavelet aplicada a análise automática de oscilografias de curta duração em unidades geradoras / Wavelet transform applied automatic analysis of short oscillograms generating units

Pereira, Sidnei 31 March 2016 (has links)
Este trabalho tem como foco de estudo a análise automática de registros de perturbações em unidades geradoras do sistema elétrico. Propõe-se um método, baseado na transformada wavelet, para aplicar aos registros de perturbações de curta duração (forma de onda) e detectar instantes de faltas em geradores, realizar a segmentação dos registros e extrair informações que caracterizem a falta. Como saída deste método, se obtém um conjunto de informações representativas dos sinais monitorados em unidades geradoras. Essas informações podem ser aplicadas a um sistema especialista voltado para a classificação de faltas e demais condições anormais de operação. O grande volume de dados, produzidos pelos registradores digitais de perturbações do sistema elétrico, justifica a pesquisa e a busca por métodos de análise automática que auxiliem o trabalho dos analistas em busca das causas das perturbações. A revisão bibliográfica apontou as possíveis aplicações para as oscilografias e o estado da arte dessas. A revisão conceitual do padrão COMTRADE e da transformada wavelet embasa a escolha do método adequado à solução do problema. Testes foram realizados para determinar a melhor wavelet mãe no processo de segmentação. O método proposto foi aplicado a cinco estudos de casos com registros de oscilografias reais e o resultado obtido confirmou a eficiência deste. Espera-se, com esta pesquisa, aperfeiçoar o processo de análise pós-operação de ocorrências no Sistema Interligado Nacional, tendo como resultado direto a redução no tempo de indisponibilidade de equipamentos, como geradores. / The focus of this work is the automatic analysis of disturbance records for electrical power generating units. The main proposition is a method based on wavelet transform applied to short-term disturbance records (waveform records). The goal of the method is to detect the time instants of recorded disturbances and extract meaningful information that characterize the faults. The result is a set of representative information of the monitored signals in power generators. This information can be further classified by an expert system (or other classification method) in order to classify the faults and other abnormal operating conditions. The large amount of data produced by digital fault recorders during faults justify the research of methods to assist the analysts in their task of analysing the disturbances. The literature review pointed out the state of the art and possible applications for oscillography records. The review of the COMTRADE standard and wavelet transform underlines the choice of the method for solving the problem. The conducted tests lead to the determination of the best mother wavelet for the segmentation process. The application of the proposed method to five case studies with real oscillographic records confirmed the accuracy and efficiency of the proposed scheme. With this research, the post-operation analysis of occurrences is improved and as a direct result is the reduction of the time that generators are offline.
4

Segmentação, classificação e detecção de novas classes de eventos em oscilografias de redes de distribuição de energia elétrica

Lazzaretti, André Eugenio 27 February 2015 (has links)
CAPES / Este trabalho apresenta novas abordagens para duas das etapas fundamentais relacionadas com análise automática de oscilografias de redes de distribuição: a detecção dos instantes transitórios e a sua classificação. Para comparação e validação dos métodos são utilizadas duas bases de dados, sendo uma delas formada por dados simulados no aplicativo Alternative Transient Program e outra contendo dados reais de oscilógrafos instalados em uma rede de distribuição de energia elétrica. Os dados reais apresentam um conjunto de eventos relevante para as análises aqui propostas, principalmente por conter uma gama variada de eventos, incluindo transitórios decorrentes de descargas atmosféricas. Com relação à detecção de transitórios (segmentação de oscilografias), foram testados os métodos atualmente propostos na literatura, os quais contemplam Filtro de Kalman, Transformada Wavelet Discreta e Modelos Autorregressivos, além de serem propostas duas novas técnicas baseadas no Operador de Energia de Teager e Representação de Dados Utilizando Vetores Suporte. Demonstra-se que, tanto para dados simulados quanto para dados reais, o método de detecção baseado na Representação de Dados utilizando Vetores Suporte aponta para um melhor desempenho global no processo de detecção. Com relação à classificação automática de oscilografias, propõe-se uma nova abordagem incluindo um estágio dedicado à detecção de padrões não inseridos no aprendizado prévio do classificador, denominados de novidades, além da própria classificação multiclasse normalmente empregada para diferenciar múltiplas classes conhecidas a priori. São testadas abordagens utilizando a detecção de novidades e classificação multiclasse em estágios simultâneos e subsequentes, com base nos classificadores X-Médias, K-Vizinhos-Mais-Próximos e Representação de Dados Utilizando Vetores Suporte com diferentes formulações, além do próprio classificador multiclasse baseado em Máquinas de Vetor Suporte. Adicionalmente, é proposto um tratamento aos padrões considerados como novidades, com o intuito de fornecer informações ao especialista sobre as similaridades existentes entre os padrões desse conjunto. Para realizar esse processo, optou-se por utilizar modelos de agrupamento automático. Os resultados finais, principalmente para a base de dados incluindo eventos reais, mostram que é possível obter um desempenho de classificação relevante (acima de 80%) para cada um dos estágios do processo de classificação proposto, o qual inclui a detecção de novidades, a classificação multiclasse e o processamento de padrões classificados como novidades (agrupamento automático). / This work presents new approaches for two of the fundamental steps in automatic waveform analysis in electrical distribution systems: transient time detection and its classification. Two datasets were used to compare and validate the proposed methods. The first is composed by simulated waveforms, by using the Alternative Transient Program, while the second is formed by real data from a monitoring system developed for overhead distribution power lines. The real data present a set of relevant events for the analysis proposed here, mainly due to the variety of events, including lightning-related transients. Regarding transient detection (waveform segmentation), the experiments involve usual segmentation methods, such as Kalman filtering, standard Discrete Wavelet Transform, and autoregressive models, besides two new techniques based on the Teager Energy Operator and Support Vector Data Description. The results obtained on both simulated and real world data demonstrate that the method based on Support Vector Data Description outperforms other methods in the transient identification task. Regarding the automatic waveform classification, a new approach including the detection of classes not defined in the training stage (called novelties) is presented. Also, the classifier is able to discriminate among multiple known classes, normally defined as multi-class classification. Two different approaches are compared, by using multi-class classification and novelty detection in two subsequent stages and in a simultaneous way. The following classifiers were assessed: X-Means, K-Nearest-Neighbors, and Support Vector Data Description with different formulations, besides the Support Vector Machine for multi-class classification. Furthermore, a technique for the post-processing of the novelties is presented, in order to provide some useful information for the experts, regarding possible similarities in the novelty set. To accomplish this task, automatic clustering methods were used. The final results, especially for the dataset with real examples, show that it is possible to obtain a relevant classification performance (above 80%) in each one of the three stages of the classification process: multi-class classification, novelty detection, and the post-processing applied to the novelties (automatic clustering).
5

Segmentação, classificação e detecção de novas classes de eventos em oscilografias de redes de distribuição de energia elétrica

Lazzaretti, André Eugenio 27 February 2015 (has links)
CAPES / Este trabalho apresenta novas abordagens para duas das etapas fundamentais relacionadas com análise automática de oscilografias de redes de distribuição: a detecção dos instantes transitórios e a sua classificação. Para comparação e validação dos métodos são utilizadas duas bases de dados, sendo uma delas formada por dados simulados no aplicativo Alternative Transient Program e outra contendo dados reais de oscilógrafos instalados em uma rede de distribuição de energia elétrica. Os dados reais apresentam um conjunto de eventos relevante para as análises aqui propostas, principalmente por conter uma gama variada de eventos, incluindo transitórios decorrentes de descargas atmosféricas. Com relação à detecção de transitórios (segmentação de oscilografias), foram testados os métodos atualmente propostos na literatura, os quais contemplam Filtro de Kalman, Transformada Wavelet Discreta e Modelos Autorregressivos, além de serem propostas duas novas técnicas baseadas no Operador de Energia de Teager e Representação de Dados Utilizando Vetores Suporte. Demonstra-se que, tanto para dados simulados quanto para dados reais, o método de detecção baseado na Representação de Dados utilizando Vetores Suporte aponta para um melhor desempenho global no processo de detecção. Com relação à classificação automática de oscilografias, propõe-se uma nova abordagem incluindo um estágio dedicado à detecção de padrões não inseridos no aprendizado prévio do classificador, denominados de novidades, além da própria classificação multiclasse normalmente empregada para diferenciar múltiplas classes conhecidas a priori. São testadas abordagens utilizando a detecção de novidades e classificação multiclasse em estágios simultâneos e subsequentes, com base nos classificadores X-Médias, K-Vizinhos-Mais-Próximos e Representação de Dados Utilizando Vetores Suporte com diferentes formulações, além do próprio classificador multiclasse baseado em Máquinas de Vetor Suporte. Adicionalmente, é proposto um tratamento aos padrões considerados como novidades, com o intuito de fornecer informações ao especialista sobre as similaridades existentes entre os padrões desse conjunto. Para realizar esse processo, optou-se por utilizar modelos de agrupamento automático. Os resultados finais, principalmente para a base de dados incluindo eventos reais, mostram que é possível obter um desempenho de classificação relevante (acima de 80%) para cada um dos estágios do processo de classificação proposto, o qual inclui a detecção de novidades, a classificação multiclasse e o processamento de padrões classificados como novidades (agrupamento automático). / This work presents new approaches for two of the fundamental steps in automatic waveform analysis in electrical distribution systems: transient time detection and its classification. Two datasets were used to compare and validate the proposed methods. The first is composed by simulated waveforms, by using the Alternative Transient Program, while the second is formed by real data from a monitoring system developed for overhead distribution power lines. The real data present a set of relevant events for the analysis proposed here, mainly due to the variety of events, including lightning-related transients. Regarding transient detection (waveform segmentation), the experiments involve usual segmentation methods, such as Kalman filtering, standard Discrete Wavelet Transform, and autoregressive models, besides two new techniques based on the Teager Energy Operator and Support Vector Data Description. The results obtained on both simulated and real world data demonstrate that the method based on Support Vector Data Description outperforms other methods in the transient identification task. Regarding the automatic waveform classification, a new approach including the detection of classes not defined in the training stage (called novelties) is presented. Also, the classifier is able to discriminate among multiple known classes, normally defined as multi-class classification. Two different approaches are compared, by using multi-class classification and novelty detection in two subsequent stages and in a simultaneous way. The following classifiers were assessed: X-Means, K-Nearest-Neighbors, and Support Vector Data Description with different formulations, besides the Support Vector Machine for multi-class classification. Furthermore, a technique for the post-processing of the novelties is presented, in order to provide some useful information for the experts, regarding possible similarities in the novelty set. To accomplish this task, automatic clustering methods were used. The final results, especially for the dataset with real examples, show that it is possible to obtain a relevant classification performance (above 80%) in each one of the three stages of the classification process: multi-class classification, novelty detection, and the post-processing applied to the novelties (automatic clustering).

Page generated in 0.0637 seconds