• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Investigation of Design Parameters on Oscillating Heat Pipe (Ohp) Based Waste Heat Recovery System

Kaya, Mustafa Nezih 10 August 2018 (has links)
In this research, we quantify the parametric effects (number of turns, inclination angle, and filling ratio) on different designs of closed loop oscillating heat pipes (CLOHPs). Experiments were conducted on a CLOHP, which is made of copper tube with 1.65-mm inner diameter. Tubes are heated and cooled by constant temperature in wind tunnels, and n-pentane was used as the working fluid. The numbers of turns used were 5, 7, and 9. The effects of number of turns were investigated in order to prove the less gravity effect when the number of turns increases. Inclination angles used were 75, 82.5, and 90-degree. Inclination angle effects were investigated to verify that inclination angle decreases the affects of gravitational force. The tubes were charged to 0 and to 70 percent of total volume of tubes with n-pentane to demonstrate optimum heat transfer between condenser and evaporation sections. The importance of this work is in presenting design parameters to obtain lower energy consumption in comparison to previous known designs. Results indicate that 9 turns, 90-degree inclination angle, and charging 70 percent n-pentane of tubes were the most effective design parameters.
2

Design Configurations and Operating Limitations of an Oscillating Heat Pipe

Ibrahim, Omar Talal 11 August 2017 (has links)
Passive and compact heat dissipation systems are and will remain vital for the successful operation of modern electronic systems. Oscillating heat pipes (OHPs) have been a part of this research area since their inception due to their ability to passively manage high heat fluxes. In the current investigation, different designs of tubular, flat plate, and multiple layer oscillating heat pipes are studied by using different operating parameters to investigate the operating limitations of each design. Furthermore, selective laser melting was demonstrated as a new OHP manufacturing technique and was used to create a compact multiple layer flat plate OHP. A 7-turn tubular oscillating heat pipe (T-OHP) was created and tested experimentally with three working fluids (water, acetone, and n-pentane) and different orientations (horizontal, vertical top heating, and vertical bottom heating). For vertical, T-OHP was tested with the condenser at 0°, 45° and 90° bend angle from the y-axis (achieved by bending the OHP in the adiabatic) in both bottom and top heating modes. The results show that T-OHP thermal performance depends on the bend angle, working fluid, and orientation. Another design of L-shape closed loop square microchannel (750 x 750 microns) copper heat pipe was fabricated from copper to create a thermal connector with thermal resistance < 0.09 ˚C/W for electronic boards. The TC-OHP was able to manage heat rates up to 250 W. A laser powder bed fusion (L-PBF) additive manufacturing (AM) method was employed for fabricating a multi-layered, Ti-6Al-4V oscillating heat pipe (ML-OHP). The 50.8 x 38.1 x 15.75 mm3 ML-OHP consisted of four inter-connected layers of circular mini-channels, as well an integrated, hermetic-grade fill port. A series of experiments were conducted to characterize the ML-OHP thermal performance by varying power input (up to 50 W), working fluid (water, acetone, NovecTM 7200, and n-pentane), and operating orientation (vertical bottom-heating, horizontal, and vertical top-heating). The ML-OHP was found to operate effectively for all working fluids and orientations investigated, demonstrating that the OHP can function in a multi-layered form, and further indicating that one can ‘stack’ multiple, interconnected OHPs within flat media for increased thermal management.
3

THERMAL HYDRAULIC PERFORMANCE OF AN OSCILLATING HEAT PIPE FOR AXIAL HEAT TRANSFER AND AS A HEAT SPREADER

Abdelnabi, Mohamed January 2022 (has links)
In this thesis, a stacked double-layer flat plate oscillating heat pipe charged with degassed DI water was designed, fabricated and characterized under different operating conditions (orientation, system or cooling water temperature and heat load). The oscillating heat pipe was designed to dissipate 500 W within a footprint of 170 x 100 mm2. The oscillating heat pipe had a total of 46 channels (23 channels per layer) with a nominal diameter of 2 mm. Tests were performed to characterize the performance of the oscillating heat pipe for (i) axial heat transfer and (ii) as a heat spreader. The stacked oscillating heat pipe showed a distinctive feature in that it overcame the absence of the gravity effect when operated in a horizontal orientation. The thermal performance was found to be greatly dependent on the operational parameters. The oscillating heat pipe was able to dissipate a heat load greater than 500 W without any indication of dry-out. An increase in the cooling water temperature enhanced the performance and was accompanied with an increase in the on/off oscillation ratio. The lowest thermal resistance of 0.06 K/W was achieved at 500 W with a 50℃ cooling water temperature, with a corresponding evaporator heat transfer coefficient of 0.78 W/cm2K. The oscillating heat pipe improved the heat spreading capability when locally heated at the middle and end locations. The thermal performance was enhanced by 27 percent and 21 percent, respectively, when compared to a plain heat spreader. / Thesis / Master of Applied Science (MASc)
4

Oscillating Heat Spreaders for High Heat Flux Thermal Management

Mahony, Colin Philip 09 December 2016 (has links)
Multiple oscillating heat spreaders (OHS) were fabricated for the purpose of effectively transporting heat fluxes from vehicular electronics. The OHSs possessed modified evaporators for enhanced thermal spreading capabilities; one OHS was designed for pressure shorting, i.e. the ‘Slots OHS’, and the other for thermal shorting, i.e. the ‘Perforated Evaporator OHS’. These OHSs were tested in the axial heating configuration with the evaporator length-wise opposite the condenser, as well as in a centralized heating configuration implemented with the condenser thick-wise opposite the heat source to characterize thermal spreading effectiveness. The condensing location and heat input were varied in the central heating and axial configuration to determine thermal spreading effectiveness dependency to condenser location, heat removal, and heat input. Both OHSs were experimentally compared to an OHS of similar dimensions with no modified evaporator, and the results indicate the modified evaporators improve OHS thermal spreading ability for high heat flux thermal management.
5

Energy Harvesting by Oscillating Heat Pipes

Monroe, John Gabriel 09 December 2016 (has links)
Oscillating heat pipes (OHPs) have been actively investigated since their inception due to their ability to manage high heat/heat fluxes. The OHP is a passive, wickless, two-phase heat transfer device that relies on pressure driven fluid oscillations within a hermetically-sealed serpentine channel structure. The cyclic phase-change heat transfer drives additional sensible heat transfer, and this combination causes OHPs to have high effective thermal conductivities. Many strides have been made, through both experimentation and modeling, to refine the design and implementation of OHPs. However, the main objective in OHP research has been to better understand the thermodynamic and fluid mechanic phenomena so as to enhance OHPs' thermal performance. The current work presents methods for using OHP in thermal-to-electric energy harvesting, which would allow for ‘dual-purpose’ OHP applications in which thermal management can be combined with work output. Energy harvesting occurred when a portion of the thermally-driven fluidic motion was used to generate a voltage either by electromagnetic induction or by a piezoelectric transducer imbedded in an OHP tube. For the induction approach, two methods were used to create the time-varying magnetic field required for induction. In the first, a ferrofluid was used as the OHP working fluid. Because the magnetic dipoles of the nanoparticles are randomly aligned naturally, two static, external ‘bias’ magnets were required to create a uniform magnetic field to align the particle dipoles for a non-zero magnetic flux change through a coaxial solenoid. The second method used a small rare-earth magnet confined inside a set length of an OHP channel that had a coaxial solenoid. As the OHP working fluid moved inside the harvesting channel, a portion of the fluid's momentum was transferred to the magnet, causing it to oscillate. For the piezoelectric approach, a narrow piezoelectric transducer was placed in a bow-shaped configuration along the inside of an OHP channel. Passing fluid would deflect the piezo creating a potential difference across its leads, which protruded out of the channel walls. All three of these methods successfully produced a voltage while retaining the excellent thermal performance synonymous with OHPs.
6

Development of Oscillating Heat Pipe for Waste Heat Recovery

Mahajan, Govinda 09 December 2016 (has links)
The development and implementation of technologies that improves Heating Ventilation & Air Conditioning (HVAC) system efficiency, including unique waste heat recovery methods, are sought while considering financial constraints and benefits. Recent studies have found that through the use of advanced waste heat recovery systems, it is possible to reduce building’s energy consumption by 30%. Oscillating heat pipes (OHP) exists as a serpentine-arranged capillary tube, possesses a desirable aerodynamic form factor, and provides for relatively high heat transfer rates via cyclic evaporation and condensation of an encapsulated working fluid with no internal wicking structure required. In last two decade, it has been extensively investigated for its potential application in thermal management of electronic devices. This dissertation focuses on the application of OHP in waste heat recovery systems. To achieve the goal, first a feasibility study is conducted by experimentally assessing a nine turn copper-made bare tube OHP in a typical HVAC ducting system with adjacent air streams at different temperatures. Second, for a prescribed temperature difference and volumetric flow rate of air, a multi-row finned OHP based Heat Recovery Ventilator (OHP-HRV) is designed and analyzed for the task of pre-conditioning the intake air. Additionally, the energy and cost savings analysis is performed specifically for the designed OHP-HRV system and potential cost benefits are demonstrated for various geographical regions within the United States. Finally, an atypically long finned OHP is experimentally investigated (F-OHP) under above prescribed operating condition. Helical fins are added to capillary size OHP tubes at a rate of 12 fins per inch (12 FPI), thereby increasing the heat transfer area by 433%. The coupled effect of fins and oscillation on the thermal performance of F-OHP is examined. Also, F-OHP’s thermal performance is compared with that of bare tube OHP of similar dimension and operating under similar condition. It was determined that OHP can be an effective waste heat recovery device in terms of operational cost, manufacturability, thermal and aerodynamic performance. Moreover, it was also determined that OHP-HRV can significantly reduce energy consumption of a commercial building, especially in the winter operation.

Page generated in 0.0968 seconds