Spelling suggestions: "subject:"osmium atoms"" "subject:"desmium atoms""
1 |
Osmium atoms and Os2 molecules move faster on selenium-doped compared to sulfur-doped boronic graphenic surfacesBarry, Nicolas P.E., Pitto-Barry, Anaïs, Tran, J., Spencer, S.E.F., Johansen, A.M., Sanchez, A.M., Dove, A.P., O'Reilly, R.K., Deeth, R.J., Beanland, R., Sadler, P.J. 06 July 2015 (has links)
Yes / We deposited Os atoms on S- and Se-doped boronic graphenic surfaces by electron bombardment of micelles containing 16e complexes [Os(p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-diselenate/dithiolate)] encapsulated in a triblock copolymer. The surfaces were characterized by energy-dispersive X-ray (EDX) analysis and electron energy loss spectroscopy of energy filtered TEM (EFTEM). Os atoms moved ca. 26× faster on the B/Se surface compared to the B/S surface (233 ± 34 pm·s–1 versus 8.9 ± 1.9 pm·s–1). Os atoms formed dimers with an average Os–Os distance of 0.284 ± 0.077 nm on the B/Se surface and 0.243 ± 0.059 nm on B/S, close to that in metallic Os. The Os2 molecules moved 0.83× and 0.65× more slowly than single Os atoms on B/S and B/Se surfaces, respectively, and again markedly faster (ca. 20×) on the B/Se surface (151 ± 45 pm·s–1 versus 7.4 ± 2.8 pm·s–1). Os atom motion did not follow Brownian motion and appears to involve anchoring sites, probably S and Se atoms. The ability to control the atomic motion of metal atoms and molecules on surfaces has potential for exploitation in nanodevices of the future. / We thank the Leverhulme Trust (Early Career Fellowship No. ECF-2013 414 to NPEB), the University of Warwick (Grant No. RDF 2013-14 to NPEB), the EPSRC (EP/G004897/1 to RKOR), and ERC (Grant No. 247450 to PJS) for support.
|
Page generated in 0.0461 seconds