Spelling suggestions: "subject:"osmium complexes"" "subject:"desmium complexes""
1 |
In Vivo Selectivity and Localization of Reactive Oxygen Species (ROS) Induction by Osmium Anticancer Complexes That Circumvent Platinum ResistanceCoverdale, J.P.C., Bridgewater, H.E., Song, J.-I., Smith, N.A., Barry, Nicolas P.E., Bagley, I., Sadler, P.J., Romero-Canelon, I. 2018 September 1919 (has links)
Yes / Platinum drugs are widely used for cancer treatment. Other precious metals are promising, but their clinical progress depends on achieving different mechanisms of action to overcome Pt-resistance. Here, we evaluate 13 organo-Os complexes: 16-electron sulfonyl-diamine catalysts [(η6-arene)Os(N,N′)], and 18-electron phenylazopyridine complexes [(η6-arene)Os(N,N’)Cl/I]+ (arene = p-cymene, biphenyl, or terphenyl). Their antiproliferative activity does not depend on p21 or p53 status, unlike cisplatin, and their selective potency toward cancer cells involves the generation of reactive oxygen species. Evidence of such a mechanism of action has been found both in vitro and in vivo. This work appears to provide the first study of osmium complexes in the zebrafish model, which has been shown to closely model toxicity in humans. A fluorescent osmium complex, derived from a lead compound, was employed to confirm internalization of the complex, visualize in vivo distribution, and confirm colocalization with reactive oxygen species generated in zebrafish. / Wellcome Trust (grant no. 107691/Z/15/Z), ERC (grant nos. 247450, 324594), Science City (AWM and ERDF), WCPRS and Bruker Daltonics (Studentship for JPCC), Mike and Enfys Bagguley, and EPSRC (Studentship for HEB, and grant no. EP/F034210/1)
|
2 |
A multinuclear 1H, 13C and 11B solid-state MAS NMR study of 16- and 18-electron organometallic ruthenium and osmium carborane complexesBarry, Nicolas P.E., Kemp, T.F., Sadler, P.J., Hanna, J.V. 20 February 2014 (has links)
Yes / The first 1H, 13C, 31P and 11B solid state MAS NMR studies of electron-
deficient carborane-containing ruthenium and osmium
complexes [Ru/Os(p-cym)(1,2-dicarba-closo-dodecaborane-1,2-
dithiolate)] are reported. The MAS NMR data from these 16-electron
complexes are compared to those of free carborane-ligand
and an 18-electron triphenylphosphine ruthenium adduct, and
reveal clear spectral differences between 16- and 18-electron
organometallic carborane systems in the solid state. / We thank the Swiss National Science Foundation (grant no. PA00P2-145308 to NPEB), the ERC (grant no. 247450 to PJS), EPSRC (grant no. EP/F034210/1) and EC COST Action CM1105 for support. JVH thanks EPSRC and the University of Warwick for partial funding of the solid state NMR infrastructure at Warwick, and acknowledges additional support obtained through Birmingham Science City: Innovative Uses for Advanced Materials in the Modern World (West Midlands Centre for Advanced Materials Project 2), with support from Advantage West Midlands (AWM) and partial funding by the European Regional Development Fund (ERDF).
|
3 |
The supramolecular photochemistry of precious metal #alpha#,#alpha#'-diimine complexesSimpson, Naomi Rosalind Mary January 2001 (has links)
No description available.
|
4 |
In vivo selectivity and localization of reactive oxygen species (ROS) induction by osmium anticancer complexes that circumvent platinum resistanceCoverdale, J.P.C., Bridgewater, H.E., Song, J-I., Smith, N.A., Barry, Nicolas P.E., Bagley, I., Sadler, P.J., Romero-Canelon, I. 19 September 2018 (has links)
Yes / Platinum drugs are widely used for cancer treatment. Other precious metals are promising, but their clinical progress depends on achieving different mechanisms of action to overcome Pt-resistance. Here, we evaluate 13 organo-Os complexes: 16-electron sulfonyl-diamine catalysts [(η6-arene)Os(N,N′)], and 18-electron phenylazopyridine complexes [(η6-arene)Os(N,N’)Cl/I]+ (arene = p-cymene, biphenyl, or terphenyl). Their antiproliferative activity does not depend on p21 or p53 status, unlike cisplatin, and their selective potency toward cancer cells involves the generation of reactive oxygen species. Evidence of such a mechanism of action has been found both in vitro and in vivo. This work appears to provide the first study of osmium complexes in the zebrafish model, which has been shown to closely model toxicity in humans. A fluorescent osmium complex, derived from a lead compound, was employed to confirm internalization of the complex, visualize in vivo distribution, and confirm colocalization with reactive oxygen species generated in zebrafish. / Wellcome Trust (grant no. 107691/Z/15/Z), ERC (grant nos. 247450, 324594), Science City (AWM and ERDF), WCPRS and Bruker Daltonics (Studentship for JPCC), Mike and Enfys Bagguley, and EPSRC (Studentship for HEB, and grant no. EP/F034210/1).
|
Page generated in 0.0317 seconds