• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dissecting the cellular and molecular mechanisms mediating neurofibromatosis type 1 related bone defects

Rhodes, Steven David 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Skeletal manifestations including short stature, osteoporosis, kyphoscoliosis, and tibial dysplasia cumulatively affect approximately 70% of patients with neurofibromatosis type 1 (NF1). Tibial pseudarthrosis, the chronic non-union of a spontaneous fracture, is a debilitating skeletal malady affecting young children with NF1. These non-healing fractures respond poorly to treatment and often require amputation of the affected limb due to limited understanding of the causative mechanisms. To better understand the cellular and molecular pathogenesis of these osseous defects, we have established a new mouse model which recapitulates a spectrum of skeletal pathologies frequently observed in patients with NF1. Nf1flox/-;Col2.3Cre mice, harboring Nf1 nullizygous osteoblasts on a Nf1+/- background, exhibit multiple osseous defects which are closely reminiscent of those found in NF1 patients, including runting (short stature), bone mass deficits, spinal deformities, and tibial fracture non-union. Through adoptive bone marrow transfer studies, we have demonstrated that the Nf1 haploinsufficient hematopoietic system pivotally mediates the pathogenesis of bone loss and fracture non-union in Nf1flox/-;Col2.3Cre mice. By genetic ablation of a single Nf1 allele in early myeloid development, under the control of LysMCre, we have further delineated that Nf1 haploinsufficient myeloid progenitors and osteoclasts are the culprit lineages mediating accelerated bone loss. Interestingly, conditional Nf1 haploinsufficiency in mature osteoclasts, induced by CtskCre, was insufficient to trigger enhanced lytic activity. These data provide direct genetic evidence for Nf1’s temporal significance as a gatekeeper of the osteoclast progenitor pool in primitive myelopoiesis. On the molecular level, we found that transforming growth factor-beta1 (TGF-β1), a primary mediator in the spatiotemporal coupling of bone remodeling, is pathologically overexpressed by five- to six- fold in both NF1 patients and in mice. Nf1 deficient osteoblasts, the principal source of TGF-β1 in the bone matrix, overexpress TGF-β1 in a gene dosage dependent fashion. Moreover, p21Ras dependent hyperactivation of the Smad pathway accentuates responses to pathological TGF-β1 signals in Nf1 deficient bone cells. As a proof of concept, we demonstrate that pharmacologic TβRI kinase inhibition can rescue bone mass defects and prevent tibial fracture non-union in Nf1flox/-;Col2.3Cre mice, suggesting that targeting TGF-β1 signaling in myeloid lineages may provide therapeutic benefit for treating NF1 skeletal defects.
2

The essential role of Stat3 in bone homeostasis and mechanotransduction

Zhou, Hongkang January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Signal Transducer and Activator of Transcription 3 (Stat3) is a transcription factor expressed in bone and joint cells that include osteoblasts, osteocytes, osteoclasts, and chondrocytes. Stat3 is activated by a variety of cytokines and growth factors, including IL-6/gp130 family cytokines. These cytokines not only regulate the differentiation of osteoblasts and osteoclasts, but also regulate proliferation of chondrocytes through Stat3 activation. In 2007, mutations of Stat3 have been confirmed to cause a rare human immunodeficiency disease – Job syndrome which presents skeletal abnormalities like: reduced bone density (osteopenia), scoliosis, hyperextensibility of joints, and recurrent pathological bone fractures. Changes in the Stat3 gene alter the structure and function of the Stat3 proteins, impairing its ability to control the activity of other genes. However, little is known about the effects of Stat3 mutations on bone cells and tissues. To investigate the in vivo physiological role of Stat3 in bone homeostasis, osteoblast/osteocyte-specific Stat3 knockout (KO) mice were generated via the Cre-LoxP recombination system. The osteoblast/osteocyte-specific Stat3 KO mice showed bone abnormalities and an osteoporotic phenotype because of a reduced bone formation rate. Furthermore, inactivation of Stat3 decreased load-driven bone formation, and the disruption of Stat3 in osteoblasts suppressed load-driven mitochondrial activity, which led to an elevated level of reactive oxygen species (ROS) in cultured primary osteoblasts. Stat3 has been found to be responsive to mechanical stimulation, and might play an important role in mechanical signal transduction in osteocytes. To investigate the role Stat3 plays in mechanical signaling transduction, osteocyte-specific Stat3 knockout (KO) mice were created. Inactivation of Stat3 in osteocytes presented a significantly reduced load-driven bone formation. Decreased osteoblast activity indicated by reduced osteoid surface was also found in osteocyte-specific Stat3 KO mice. Moreover, sclerostin (SOST) protein which is a critical osteocyte-specific inhibitor of bone formation, its encoded gene SOST expression has been found to be enhanced in osteocyte-specific Stat3 KO mice. Thus, these results clearly demonstrated that Stat3 plays an important role in bone homeostasis and mechanotransduction, and Stat3 is not only involved in bone-formation-important genes regulation in the nucleus but also in mediation of ROS and oxidative stress in mitochondria.

Page generated in 0.069 seconds