• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 38
  • 38
  • 38
  • 11
  • 11
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Long Term Effects of Methylphenidate on the Brain

Hall, Alexis, Oakes, Hannah, Pond, Brooks B. 05 April 2018 (has links)
Attention Deficit Hyperactivity Disorder, a disorder marked by a pattern of inattention and hyperactivity, is commonly treated with the drug methylphenidate (MPH), which inhibits reuptake of the neurotransmitters norepinephrine and dopamine, thereby increasing the levels of these catecholamines in the synaptic cleft. In addition, MPH is abused by students studying for exams to increase focus and wakefulness. Despite the extensive use of MPH, little is known its long-term effects on the brain. In this study, we examined the impact of 4 weeks of MPH treatment on neurogenesis or the “birth” of new brain cells in the hippocampus of male adolescent mice. Neurogenesis was measured using 5’-ethinyldeoxyuridine (EdU), a thymidine analog that gets incorporated into DNA before cell division, and total neuron numbers were estimated using the neuronal marker, NeuN. Interestingly, low (1 mg/kg) and high (10 mg/kg) doses of MPH delivered twice daily, increased the rate of neurogenesis after 4 weeks. We also examined the survival of the new cells 4 weeks after EdU injection, both with and without continued MPH treatment. Cell counts were performed, and ratios of EdU+/NeuN+ cells were compared. Although both 1 mg/kg and 10 mg/kg MPH increased the ratio of EdU+/NeuN+ cells, the EdU+/NeuN+ ratios were no different from control if MPH was not continued. If low dose of MPH was continued for an extra 4 weeks, survival of newly generated cells was enhanced; this was not the case for the high dose of MPH. To investigate the mechanism for MPH-induced changes in hippocampal neurogenesis, we examined the levels of proteins linked to cell growth and survival in the hippocampus, including brain derived neurotrophic factor (BDNF), glial cell line derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), tropomyosin receptor kinase B (TrkB, the receptor for BDNF) and beta-catenin. Levels of BDNF or GDNF were examined using enzyme-linked immunosorbent assays (ELISAs), and VEGF, TrkB, and beta-catenin expression was investigated using simple western. Interestingly, 1 mg/kg MPH appears to increase VEGF, TrkB, and beta catenin after 4 weeks. In animals treated with 10 mg/kg MPH, despite the increases in neurogenesis after 4 weeks of treatment, beta catenin levels decreased compared to control at 4 weeks, and VEGF, TrkB and beta catenin levels were decreased at 8 weeks. Thus, long-term exposure to MPH increases neurogenesis rate in the hippocampus, and the effect of low doses of MPH may be related to the increased expression of VEGF, TrkB and beta catenin.
2

DYNAMIC L-GLUTAMATE SIGNALING IN THE PREFRONTAL CORTEX AND THE EFFECTS OF METHYLPHENIDATE TREATMENT

Mattinson, Catherine Elizabeth 01 January 2012 (has links)
The prefrontal cortex (PFC) is an area of the brain that is critically important for learning, memory, organization, and integration, and PFC dysfunction has been associated with pathologies including Alzheimer’s disease, schizophrenia, and drug addiction. However, there exists a paucity of information regarding neurochemical signaling in the distinct sub-regions of the PFC, particularly the medial prefrontal cortex (mPFC). The mPFC receives glutamatergic input from a number of brain areas, and functional glutamate signaling is essential for normal cognitive processes. To further understand glutamate neurotransmission, in vivo measurements of glutamate were performed in the cingulate cortex, prelimbic cortex, and infralimbic cortex of anesthetized rats using enzyme-based microelectrode array technology. Measurements of acetylcholine were also performed to examine the relationship between glutamate and other neurotransmitters in the mPFC. The described studies revealed a homogeneity of glutamate and acetylcholine signaling in the mPFC sub-regions, indicating somewhat uniform tonic and phasic levels of these two transmitters. In the infralimbic mPFC of awake freely-moving rats, rapid, phasic glutamate signaling events, termed “transients” were observed and in vivo glutamate signaling was successfully monitored over 24 hour time periods. The effects of methylphenidate (MPH), a stimulant medication with abuse potential that is used in the treatment of attention-deficit hyperactivity disorder, were measured in mPFC sub-regions of anesthetized rats. Data revealed similar tonic and phasic glutamate levels between chronic MPH-treated rats and controls in all sub-regions. Locomotor data from the chronic treatment period supported the behavioral sensitization effects of multiple MPH treatments. Significant effects were observed in locomotor activity, resting levels of glutamate, and glutamate uptake rates in the infralimbic mPFC of awake, freely-moving animals that received chronic MPH treatment. Taken together, this body of work characterizes glutamate signaling in the rat mPFC to a degree never before reported, and serves to report for the first time the effects of MPH on glutamate signaling in the mPFC.
3

Neural Responses to Vibration during Wobble Board Balancing

Nguyentat, Michael 01 January 2011 (has links)
Falling, an epidemic most prevalently seen in the elderly population, accounts for the majority of injury-related cases seen by emergency departments across the United States. Unfortunately, with no large-scale institutionalization of a solution, the problem is only expected to exacerbate as our planet’s population approaches the 7 billion mark. In the wake of the recent surge of falls among the elderly, Japan has implemented a program to include unicycling in the physical education curriculum for elementary schools across the country. The goal for this program is to encourage children to establish strong fundamental balancing skills, which could potentially alleviate the pain—physical, emotional, and financial—incurred from falls in the elderly. This senior thesis study builds off Japan’s unicycling program by investigating ways to improve wobble board balancing, a more practical alternative to unicycling. In previous research, the skill of stick balancing, a motor task that has been shown to behave with the same power laws as wobble board balancing, has been improved with the use of vibrations. Here, we show that learning to wobble board balance is not expedited and wobble board balancing skill is not improved with the employment of vibrations, unlike stick balancing. Nonetheless, those who learned to wobble board balance with background vibrations went on to later outperform those who learned to wobble board balance without vibrations. These results suggest that vibrations (50 Hz, 0.18 mm amplitude) have a beneficial effect on the development of skill for wobble board balancing that is not related to the direct physical effects of the vibration. The observations also suggest that in the presence of vibrations, the nervous system develops more robust strategies for controlling balance.
4

Allosteric Effects of G-Protein Coupled Receptor Heteromerization: Relevance to Psychosis

Younkin, Jason W 01 January 2016 (has links)
G-protein coupled receptors (GPCRs) implicated in disease are the predominant pharmaceutical targets. Growing evidence suggests that GPCRs form homo- and heteromeric complexes, resulting in allosteric functional changes. Ligands targeting one receptor can alter the function of the other receptor or receptors. Knowledge of these functional changes will provide unique opportunities to treat diseases. We examined two GPCR heteromers implicated in psychosis: mGlu2R-5HT2AR and D2R-5HT2AR. Using whole-cell patch clamp, we studied HEK-293 cells stably transfected with mGlu2R and 5HT2AR. Maximal heteromer formation allows inverse agonists to increase the G-protein activity of the opposite receptor, while sub-maximal heteromer formation does not. However, similar results are obtained in sub-maximal heteromer cells by applying a combination of a mGlu2R synthetic agonist with a 5HT2AR anti-psychotic drug. These results confirm our oocyte results, now in a mammalian cell line. Using two-electrode voltage clamp, we also investigated the allosteric changes upon heteromerization of D2R-5HT2AR in oocytes injected with appropriate cRNAs. Heteromer formation in the presence of dopamine or serotonin results in an increase in G-protein activity of each receptor while the simultaneous presence of both neurotransmitters further increases the G-protein activity. The addition of synthetic agonists or anti-psychotics decreases the G-protein activity of the opposite receptor while agonizing or antagonizing its target receptor, respectively. Maximal allosteric effects upon D2R-5HT2AR formation only occur at a specific cRNA injection ratio, but partial effects exist at other ratios. Our data suggest that allosteric functional changes upon heteromerization are physiologically relevant and are mostly different when comparing mGlu2R-5HT2AR to D2R-5HT2AR.
5

Quantifying Pathophysiology in Visual Snow: A Comparison of the N170 and P300 Components

Lai, Daniel 01 January 2018 (has links)
Visual snow syndrome is a persistent visual disturbance characterized by rapid flickering dots in the entire visual field. Hypothesized to arise from reduced inhibition of sensory cortex, visual snow has recently been linked to potentiation (enhancement) of the P100, an event-related potential (ERP) component associated with early visual processing. Here, we investigate whether this potentiation in visual snow is specific to visual responses, by comparing ERPs linked to early, bottom-up perceptual versus late, top-down cognitive processes. Specifically, we examined two components, the N170 and P300, associated respectively with rapid face categorization and attentional orienting towards targets. We predicted that if visual snow predominantly reflects diminished inhibition of perceptual areas, there should be stronger potentiation for the earlier perceptual N170 component. ERPs associated with the N170 (Face > House) and P300 (Target > Nontarget) were recorded in a 22 year-old male with a 2-year history of visual snow symptoms and a set of age- and gender-matched controls. Although N170 and P300 responses in all participants showed appropriate face- and target-selectivity, respectively, the visual snow patient demonstrated consistent potentiation relative to controls, particularly for the early N170 response. Bootstrapped estimates of mean amplitude computed within participants similarly revealed larger and more variable ERP amplitudes in the visual snow patient, especially for the N170 component. These results support an early perceptual locus of ERP potentiation in visual snow, further supporting the idea that this condition arises from diminished inhibition of sensory cortices.
6

Investigating Microglia-Vascular Interactions in the Developing and Adult Central Nervous System

Mondo, Erica 26 August 2020 (has links)
Microglia, the resident macrophages of the central nervous system (CNS), are dynamic cells, constantly extending and retracting their processes as they contact and functionally regulate neurons and other glial cells. There is far less known about how microglia interact with the CNS vasculature, particularly under healthy steady-state conditions. Here, I provide the first extensive characterization of juxtavascular microglia in the healthy, postnatal brain and identify a molecular mechanism regulating the timing of these interactions during development. Using the mouse cerebral cortex, I show that microglia are intimately associated with the vasculature in the CNS, directly contacting the basal lamina in vascular sites that are devoid of astrocyte endfeet. I demonstrate a high percentage of microglia are associated with the vasculature during the first week of postnatal development, which is concomitant with a peak in microglial colonization of the cortex and recruitment to synapses. I find that as microglia colonize the cortex, juxtavascular microglia are highly motile along vessels and become largely stationary as the brain matures. 2-photon live imaging in adult mice reveals that these vascular-associated microglia in the mature brain are stable and stationary for several weeks. Further, a decrease in microglia motility along the vasculature is tightly correlated with the expansion of astrocyte endfeet along the vasculature. Finally, I provide evidence that the timing of these microglia-vascular interactions during development is regulated by the microglial fractalkine receptor (CX3CR1). Together, these data support a model by which microglia use the vasculature as a scaffold to migrate and colonize the developing brain and the timing of these associations is modulated by CX3CR1. This migration along the vasculature becomes restricted as astrocyte vascular endfoot territory expands and, upon maturation, vascular-associated microglia become largely stationary.
7

Proliferation, Migration, and Survival of Cells in the Telencephalon of the Ball Python, Python regius

Bales, Thomas B 01 July 2014 (has links) (PDF)
Reptiles exhibit neurogenesis throughout the brain during adulthood. However, very few studies have quantified telencephalon-wide neurogenesis in adulthood, and no studies have performed these investigations in snakes. Quantifying neurogenesis in the adult snake is essential to understanding class-wide adult neurogenesis and providing insight into the evolution of this trait. The thymidine analog 5-bromo-2’-deoxyuridine (BrdU) was used to quantify cell proliferation, migration, and survival in the ball python (Python regius). First, to determine the proper dose of BrdU for injection we subcutaneously injected 50mg/kg, 100mg/kg, and 250mg/kg into 15 adult male P. regius. We found the 250mg/kg dose marked significantly more cells than the 50mg/kg dose, but not the 100mg/kg dose. Then we subcutaneously injected 100mg/kg BrdU into 15 juvenile male P. regius at 3 different time points (2 days, 2 weeks, 2 months) prior to sacrifice to quantify proliferation, migration, and survival of cells in several telencephalic subregions. After sectioning and immunohistochemical staining, we found proliferation to be highest in the accessory olfactory bulb (AoB), retrobulbar regions (AD, AV), dorsal ventricular ridge (DVR), and dorsolateral amygdala/lateral amygdala (DLA/LA). Of the proliferating cells, the proportions of cells that migrated after 2 weeks were highest in the ventral lateral region (VL), anterior medial and lateral cortices (aMC, aLC), and anterior NS (aNS). After 2 months, the highest proportional survival was in the AoB, aLC, aMC, aNS, DVR, and ventral medial regions (VM). Regions involved in long-term functions like spatial memory may require less proliferation and longer survival, while regions involved in short-term functions undergo more proliferation with higher relative attrition.
8

MODULATORY ACTIONS OF SEROTONERGIC SYSTEM IN CARDIAC FUNCTION, BEHAVIOR, AND SENSORIMOTOR CIRCUIT ACTIVITY IN DROSOPHILA MELANOGASTER

Majeed, Zana R. 01 January 2016 (has links)
In this dissertation, I have focused on the role of serotonin (5-HT) as a modulator in heart rate, feeding and locomotion behaviors as well as sensorimotor circuit activity in Drosophila melanogaster. A general overview in the actions of the serotonergic (5-HTergic) system on the larval heart and nervous system in larvae and adults is reviewed in Chapter One. I sought to further study the actions of serotonergic system to provide additional insights into cellular and molecular underpinnings in the actions of 5-HT.In Chapter two, I present studies on mechanisms of action by 5-HT in larvae cardiac system. For this purpose, genetic and pharmacological approaches were used. The transgenic flies used expressed hM4Di receptors (designer receptors exclusively activated by designer drugs (DREADDs)) which were employed to manipulate the activity of Gαi heterotrimeric protein through activation of engineered G-protein coupled receptors hM4Di DREADD. The activation of hM4Di DREADD receptors by clozapine-N-oxide (CNO) arrested the heart beat; however, pharmacological manipulation of adenylyl cyclase activity and cAMP levels had no significant effect on heart rate. In Chapter Three the role of various 5-HT receptor subtypes that mediate 5-HT action in larval cardiac tissue is addressed. In this study, various 5-HT agonists and antagonists were employed. The pharmacological results demonstrate that a 5-HT2 agonist significantly increases the heart rate. Furthermore, 5-HT2 antagonist, markedly reduces the effect of 5-HT. In addition, I employed genetic approaches to corroborate the pharmacological results. In addition, I investigated the role of the 5-HTergic system in locomotion and feeding behaviors as well as in modulation of sensorimotor circuits. This study is delineated in Chapter Four. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae various pharmacological agents. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or induced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotor activity and feeding behavior in larvae. In addition, acute activation of 5-HT neurons disrupts normal locomotor activity in adult flies. In Chapter Five, I addressed direct actions of fluoxetine on synaptic transmission at neuromuscular junctions (NMJs), neural properties, and cardiac function unrelated to fluoxetine’s action as a selective 5-HT reuptake inhibitor using Drosophila, crayfish and primary neurons in mouse model system. Fluoxetine application blocked action potentials in crayfish axons, enhanced occurrences of spontaneous synaptic vesicle fusion events at NMJs of both Drosophila and crayfish. In rodent primary neurons, fluoxetine application resulted in increase of cytoplasmic Ca2+. I also developed teaching modules, which are presented in Chapter Seven, to guide students how to exploit a vast array of genetic tools, such as optogenetics in Drosophila to manipulate various neural circuits and to observe their effects on behavior and sensorimotor circuit activity. I also developed a module to teach college level students a hands-on experiment regarding proprioception and tension receptors in crab limb, which is detailed in Chapter Eight.
9

Effect of zymosan-induced peritonitis on the expression of substance P in primary sensory neurons and spinal nerve processes

Armstrong, Michael G 01 May 2016 (has links)
Macrophages and other cells of the innate immune system recognize foreign particles that could be potentially dangerous and respond by initiating an inflammatory response. The biologically active chemical mediators of this response called pro-inflammatory cytokines are produced in various myeloid derived immune cells and can affect other cells of the body. Interleukin-1β, a pro-inflammatory cytokine, has been shown to have direct effects on dorsal root ganglion (DRG) cell bodies including the upregulation and direct release of a nociceptive neurotransmitter called substance P (SP). Using a zymosan-induced model of systemic inflammation, we hypothesized that murine DRG neurons and the nerve processes associated with them in the dorsal horn of the spinal cord (SC) at the L1 level will show an upregulation of SP expression in response to inflammation in the peritoneum. Experimental mice were treated with a zymosan suspension (500mg/kg, intraperitoneal injection), and control mice received sterile filtered solution (intraperitoneal injection). Both DRG and SC specimens were collected after in situ fixation and subjected to immunofluorescence staining to label SP. Using confocal microscopy, fluorescence microscopy, and image analysis software this expression of SP was quantified and compared. In both tissue specimen groups, an increase in SP expression was discovered in zymosan treated mice. The exact cause of this increase was not specifically determined in this experiment. This experiment provided valuable insight about how a systemic inflammatory response can affect sensory nerve function. Successful methods for further experimentation were identified and information about the zymosan model of inflammation was obtained
10

The Role of Mindfulness in Self-view Investment: Neural and Subjective Indicators

Rahrig, Hadley 01 January 2019 (has links)
Self-concept is strongly influenced by beliefs about one’s personal psychological attributes, and these beliefs are held with varying degrees of confidence and consequence. Hence, it is investment in self-views of those attributes that helps to regulate and maintain stable self-concept. Self-view investment is relevant to numerous self-related functions, but high self-view investment can also contribute to maladaptive self-views. Theory suggests that mindfulness cultivates a less personal, more objective perception of one’s thoughts, emotions and behaviors, and training in mindfulness has been shown to alter self-referential processing. The current pilot study (N=21) investigates the possible role of dispositional mindfulness in two forms of self-view investment, epistemic certainty and emotive importance, as indicated by self-reported and neural (functional magnetic resonance imaging-based) indicators of investment. Results indicated that dispositional mindfulness was positively associated with self-reported epistemic certainty but not emotive importance. Trait mindfulness was associated with activity in the amygdala and parahippocampal gyrus during judgements of both epistemic certainty and emotive importance. Caudate activity was positively associated with trait mindfulness specifically for judgements of emotive importance.

Page generated in 0.0938 seconds